当前位置:首页 > 测试测量 > 测试测量
[导读] 1. 噪声和杂音概述 各种消费产品有可能会产生不良的机械噪声,这种噪声对消费者是不能接受的或令消费者不满的,这些产品包括: 汽车配件 压缩机(电冰箱,冰柜) 计算机(风扇启动) 电驱动器 助听器/

1. 噪声和杂音概述

各种消费产品有可能会产生不良的机械噪声,这种噪声对消费者是不能接受的或令消费者不满的,这些产品包括:

  • 汽车配件
  • 压缩机(电冰箱,冰柜)
  • 计算机(风扇启动)
  • 电驱动器
  • 助听器/耳机
  • 扬声器
  • 电话和移动电话中的传感器
  • 电视机

噪声或杂音是一种非线性的、不规则的、脉冲式的和失真效应的部分类型,他们通常不能用规则待测物(UUTs)来发现,而他们一般又是由待测物中机械和结构的缺陷产生的。由于具有非常低能量的短脉冲,传统测试和分析方法诸如RMS-FFT和总谐波失真(THD)方法都是没有用的。下面的图片显示了信号中的典型效应。

1)信号中的毛刺

2)陡度

3)绝对(陡度)

2. 案例研究——扬声器缺陷检测

扬声器缺陷检测的高阶次谐波特征分析

扬声器装配故障,如摩擦音圈、弯曲的支架、松弛的轴等等,传统上都是由生产线终端有丰富经验的收听者来检测这些故障的。以测量总谐波失真(THD)为主要目的,我们曾试图开发在线测试生产测量系统,他们通常只能用来分析低阶次的谐波,因而不能专门用来检测缺陷的摩擦声,嗡嗡声和滴答声等杂音。但是故障诊断时能否确定特定的缺陷特征吗?经过初步实验结果表明,我们可以做到这一点,在超声范围内(> 20千赫兹)测量是确定这些特征的主要因素。本案例研究描述了一种新的方法,在高阶次谐波组的总能量中,例如从第10阶次到第20阶次或从第31阶次到第40阶次,对其分别进行测量和分析。

扬声器的杂音信号特征

为何要关注高阶次谐波?

总谐波失真主要是由第二阶次和第三阶次谐波占主导作用,几乎很少与我们可以听出来的音频失真相关。例如,考虑下面这个扬声器的杂音。该扬声器的杂音是典型的导致丰富谐波频谱的脉冲串。

实验过程
  1. 当使用正弦波激励时,我们可以获得已知缺陷的扬声器抽样值,该缺陷会产生可以听出来的音频失真。
  2. 目视检查扬声器,以确定故障的根源。
  3. 在音频范围(20 赫兹 到 1 千赫兹)内,手动扫描扬声器,以确定造成声频失真的激发频率。
  4. 使用扫描正弦激励,分析高达100千赫兹的谐波能量。

测量安装

  • 使用橡皮高空绳索将每个扬声器悬挂,用来隔离振动。
  • 测量麦克风被放置在附近区域,如下图所示。

结果 缺陷的视觉检测

扬声器 # 包围物 锥体 音圈 轴 防尘盖 松弛的微粒 1 没有 没有 没有 没有 没有 有 – 在音圈内 2 没有 有 – 折痕的 没有 没有 没有 有 – 在音圈内 3 没有 有– 孔 没有 有- 有切口 有 - 遗失 有 – 在轴后面 4 没有 有 – 折痕的 没有 没有 没有 没有 5 没有 有 – 折痕的 没有 没有 有 – 凹的 没有 6 有 – 凹的 没有 没有 没有 没有 没有 7 有 – 凹的 有- 孔型的/折痕的 没有 没有 没有 没有 8 没有 有 – 凹的 没有 没有 没有 没有 9 没有 没有 没有 没有 没有 没有 10 有 – 凹的 有 – 折痕的 没有 没有 没有 没有

分析
  • 扬声器#9被用作控制
    • 没有视觉或听觉缺陷
    • 第40阶次到第100阶次谐波范围内,只有低于0.01%的杂音(结果如下图所示)

  • 针对相似的缺陷,对其他扬声器进行了比较。
  • 找出具有相同谐波分组的趋势。
扬声器缺陷相关

包围物

  • 第1阶次到第10阶次谐波:扬声器6,%207%20和10
  • 基本频率范围:600到1300赫兹

防尘盖

  • 第11阶次到第20阶次谐波:扬声器3 和5
  • 基本频率范围:100到400赫兹

防尘盖

  • 第31阶次到第100阶次谐波:扬声器1
  • 基本频率范围:100到150赫兹

  • 第31阶次到第100阶次谐波:扬声器3
  • 基本频率范围:400到550赫兹

锥体

  • 第61阶次到第70阶次谐波:扬声器2,3,4,5,7,8, 和10

结论

相比传统分析,使用杂音分析提供了更好的分析方法。这种分析不仅具有重复性,而且也适用于不同的扬声器模型。同样至关重要的是该分析可以将数据采集在超声范围内,使该范围内的谐波对缺陷提供深入的了解,否则我们很难检测包括轴在内的缺陷。此外,高阶次谐波不仅明确显示了扬声器中的单一缺陷,而且他们还有助于对具有多个缺陷的扬声器进行缺陷特征化分析。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭