当前位置:首页 > 测试测量 > 测试测量
[导读]本应用方案将介绍电源测量术语,阐述为进行浮地测量提供的不同选项,重点介绍每种选项的优点和缺点。 最苛刻的浮地测量要求源自电源控制电路,如马达控制器、不间断电源和工控设备。在这些应用领域中,电压和电流

本应用方案将介绍电源测量术语,阐述为进行浮地测量提供的不同选项,重点介绍每种选项的优点和缺点。

最苛刻的浮地测量要求源自电源控制电路,如马达控制器、不间断电源和工控设备。在这些应用领域中,电压和电流可能会很大,足以给用户和/或测试设备带来危险。在测量浮地高压信号时,有许多选项可以考虑。每个选项都有自己的优点和缺点。

差分测量与浮地测量比较
所有电压测量都是差分测量。差分测量定义为两点之间的电压差。电压测量分成两类:
  1. 参考地电平测量
  2. 非参考地电平测量(也称为浮地测量)

传统示波器
大多数传统示波器把“信号参考”端子连接到保护接地系统上,通常称为“接地”。通过这种方式,所有应用到示波器的信号或示波器提供的信号都会有一个公共连接点。
这个公共连接点通常是示波器机箱,通过AC供电设备电源线中的第三条线接地,来保持在(或接近)零伏。这意味着每个输入通道参考点都捆绑在一个接地参考源上。
不应该使用传统无源探头,直接在参考地电平的示波器上进行浮地测量。视流经参考引线的电流数量,传统无源探头会开始变热;在电流足够高时,它会类似熔丝那样熔化断开。

浮地测量技术
  为进行高压浮地测量提供的不同选项包括:
  1. 隔离输入示波器
  2. 差分探头
  3. 电压隔离装置
  4.“A - B” 测量技术
  5. 示波器“浮地”技术

术语表

共模信号
两个输入上共同的输入信号成分(幅度和相位完全相同)。

共模范围
差分放大器可以抑制的共模信号的最大电压(从接地)。

共模抑制比
衡量差分放大器抑制共模信号能力的一个性能指标。由于共模抑制一般会随着频率提高而下降,因此通常会指定特定频率的CMRR。

差分模式或差模
差分放大器两个输入之间的不同信号。差模信号(VDM)可以表达为:
VDM = (V+input) - (V-input)

差模信号
两个输入之间不同的信号。

差分测量
两点之间的电压差。

差分探头
为差分应用专门设计的探头。有源差分探头在探头尖端包含一个差分放大器。无源差分探头与差分放大器一起使用,可以进行校准,精确匹配两条信号路径中(包括参考引线)的DC和AC衰减。

浮地测量
任何一点都没有参考地电平(地电位)的差分测量。

接地环路
当两个或两个以上的单独接地路径在两个或两个以上的点捆绑在一起时,会出现接地环路。结果是一个导体环路。在存在变化的磁场时,这个环路会变成变压器的次级电路,作为短路线圈操作。附近承载非DC电流的任何导体都会产生磁场,激发变压器。许多导线、甚至数字IC输出引线中的AC线路电压都会产生这种激发作用。环路中循环的电流会在环路内部任何阻抗中积聚电压。这样,在任何给定时点上,接地环路中的各个点都不会位于相同的AC电位。

把示波器探头地线连接到被测电路上,如果电路“接地到”接地装置,那么会产生接地环路。作用在路径内部阻抗上的循环电流会导致电压电位积聚在探头接地路径中。
这样,示波器输入BNC连接器上的“接地”电位与被测电路中的接地不同(即“此接地非彼接”)。这种电位差可以是几微伏,也可以高达几百毫伏。由于示波器从输入BNC连接器的外壳上参考测量,因此显示的波形可能并不表示探头输入上的实际信号。随着被测信号的幅度下降,误差变得更加明显。


“单一测量”

在使用AC线路电源及使用标准三线电源线操作时,带有接地输入通道、电池供电的示波器表现出来的局限性与传统示波器一样。然而,在使用电池操作时,这些示波器可以一次进行高达30 VRMS的单一安全浮地测量。记住,所有输入公共源都捆在一起

共享参考点和隔离通道结构比较

大多数台式示波器共享下面所示的结构。在这种结构中,在进行多通道测量时,所有输入信号必须有相同的电压参考,共享的默认参考是“大地”接地。如果没有差分前置放大器或外部信号隔离器,这些台式示波器则不适合进行浮地测量。



与传统台式示波器结构相比,这种隔离通道结构中的电压参考没有在仪器内部连接在一起。因此,使用的输入的每个参考点必须连接到参考电压上。独立浮地隔离输入仍由寄生电容耦合。这可能会发生在输入参考和环境之间,及手动发生在输入参考点之间。基于这一原因,建议把参考点连接到系统接地或另一个稳定电压上。如果输入的参考点连接到高速和/或高压信号上,那么您应该了解寄生电容。


说明隔离输入示波器测量采用IsolatedChannel输入结构的示波器,如TPS2000B或THS3000系列,提供了真正的、完整的通道到通道和通道到电源线隔离能力。每条通道相互单独隔离,同时与其它非隔离器件隔离。在使用IsolatedChannel示波器进行浮地测量时,必须使用专门设计的无源探头,如TPP0201,进行高达30 VRMS的浮地测量;或使用THP0301,进行高达300 VRMS的浮地测量;或使用P5122/P5150探头,进行高达600 VRMS的浮地测量。与大多数传统示波器使用的无源探头不同,这些类型的探头在BNC连接上绝缘,防止发生触电;参考引线是为耐受额定浮地电压而设计的。(如需更多信息,请参阅本应用指南后面“注意类别和电压”一节中的讨论)差分探头测量通过使用差分探头系统,可以通过泰克TDS/DPO/MSO和大多数其它接地示波器进行浮地测量。某些差分探头(如P6246、P6247、P6248和P6330)是为幅度较低的快速信号优化的。其它探头(如P5200A、P5205A和P5210A)则处理速度较慢、电压幅度较高的信号。ADA400A差分前置放大器即使在高噪声环境中,仍能显示低频率、超低幅度的差分信号。电压隔离器测量顾名思义,隔离器在浮地输入与参考地电平输出之间没有直接的电气连接。信号通过光学或分路光学/变压器手段耦合。“A - B”测量(也叫伪差分测量)“A - B”测量技术可以使用传统示波器及无源电压探头,间接进行浮地测量。一条通道测量“正”测试点,另一条通道测量“负”测试点。从第一个测量值中减去第二个测量值,去掉两个测试点的公共电压,以便观察不能直接测量的浮地电压。示波器通道必须设置成相同的伏特/格;探头应与示波器配套,使共模抑制比达到最大。


测量参考地电平电压的两只探头实例“浮地”传统接地示波器使用不会把接地传送到次级电路的隔离变压器,或通过把示波器的AC市电电源线接地连接器,是一种常用的有风险的示波器浮地测量方式。

“浮地”参考地电平示波器把所有可以接触的相同电压的金属(包括机箱、机壳和连接器)作为探头参考引线连接的测试点。


浮地测量,危险电压发生在示波器机箱上。V1可能有几百伏!
优点和缺点

优点缺点隔离输入通道示波器为进行浮地测量提供了一种安全可靠的方式。通道到通道隔离和通道到接地隔离的明显好处是能够同时观察参考到不同电压的多个信号。

另一个优点是能够在不增加专用探头成本或昂贵笨重的电压隔离器的情况下实现这一点。通道到电源线隔离消除了信号源接地与示波器之间的路径。与差分探头不同,隔离输入通道没有提供均衡浮地测量。到接地的阻抗在尖端(+)输入和参考(-)输入之间是不同的。由于隔离通道的参考(-)输入不象接地示波器那样有默认的参考电平,因此必须把探头的参考引线连接到DUT的参考点上。

由于没有到接地的分路,因此荧光灯和大楼布线放射的工频场可能会在示波器读数上导致更多的基线噪声。使用平均采集模式会减轻这种基线噪声提高。优点

差分探头为调整接地示波器进行浮地测量提供了一种安全的方法。除安全性优势外,使用这些探头可以改善测量质量。差分探头提供了均衡测量输入电容,因此可以使用任意一条引线安全地探测电路中任何点。在比电压隔离器更高的频率上,差分探头一般CMRR性能更好。

另一种优点是全面利用示波器的多条通道,同时观察多个信号,参考不同的电压。缺点

探头仍有一条到接地的电阻路径,因此如果电路对泄漏电流灵敏,那么差分探头可能并不是最佳的解决方案。

其它缺点包括增加了一层成本,具体视示波器功能,可能要求独立的电源,这增加了成本和体积。在出厂时,必须手动确定每种测量的增益和偏置特点。优点

电压隔离器为安全测量浮地电压提供了一种手段,由于隔离器没有到地的电阻路径,因此对泄漏电流异常灵敏的应用来说,它们是一个很好的选择。优点

电压隔离器增加了一层成本。必须使用单独的电源和隔离放大器箱。
在出厂时必须为每一项测量手动确定增益和偏置特点。优点

使用“A - B”测量技术的优势在于,几乎任何示波器和标配探头都可以简便地完成这一点。记住,两个测试点必须参考地电平。因此,如果任意一个测试点都是浮地的,或如果整个系统都是浮地的,那么不适用这种方法。缺点

在进行“A - B”测量时,要使用两条示波器通道。这种技术的主要限制是共模范围相当小,这源于示波器的垂直通道动态范围。一般来说,其不到来自地电平的volts/division设置的10倍。在共模电压大于差模电压时,“A - B”测量技术可能会被认为是从两个大电压中提取小的差异。这种技术适合共模信号的幅度与差模信号相同或低于差模信号,且共模成分是DC或低频,如50 Hz或60 Hz电源线的应用。在测量幅度适中的信号时,它从测量中有效消除了接地环路电压。优点

尽管浮地设备是一种利用现有设备进行浮地测量,消除频率较低的信号上接地环路的方法,但它是一种不安全的、危险的作法,不应采用这种方法。
缺点
不管是从示波器上的升压角度(对操作人员可能会发生电击),还是由于地波器变压器绝缘装置上累积的应力,这种技术都是危险的。这种应力可能不会立即导致故障,但即使示波器恢复到正确接地操作,将来仍可能会导致发生危险故障(电击和危险)。在较高的频率上,切断接地可能不会中断接地环路,因为电源线供电的仪器在接地以上浮地时会表现出大的寄生电容。振铃可能会破坏浮地测量。浮地示波器没有均衡输入。参考一侧(探头上的“接地”夹)有一个明显的到地电容。参考点连接的任何源阻抗将在快速共模跳变中加载,使信号发生衰减。更糟糕的是,高电容可能会损坏某些电路。连接逆电器上方门中共用的示波器可能会使门驱动信号速度下降,防止被测器件关闭,防止破坏输入桥接器。这种故障通常伴随着工作台上出现小的火花。

另一个缺点是其一次只能进行一项测量。记住,所有输入参考都相互捆绑在一起。一旦浮地一个输入参考,所有输入参考现在都在同一水平上浮地。


寄生电感和电容导致的振铃使信号失真,使测量无效

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭