当前位置:首页 > 测试测量 > 测试测量
[导读]   引言   眼图的历史说长不长,大约在47年前,眼图就诞生了。传统的眼图测量方法就是利用采样示波器。即便是专业的工程师,也很难完整地、准确地理解眼图的测量原理。而其中大部分人又满足于各种权

  引言

  眼图的历史说长不长,大约在47年前,眼图就诞生了。传统的眼图测量方法就是利用采样示波器。即便是专业的工程师,也很难完整地、准确地理解眼图的测量原理。而其中大部分人又满足于各种权威机构提出的标准测量向导,满足于sigtest软件,甚至于忘了眼图也是一种重要的调试工具。

  在搜索引擎中搜到的关于眼图的资料,每一篇都表达得似乎非常地专业,但却总感觉趣味索然。

  在实际数字互连系统中,想要完全消除码间串扰是是不太可能的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,也就无法进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

  如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形因为很像人的眼睛,所以被称作眼图(EyeMap)。

  二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。

  在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

  通常眼图可以用下图所示的图形来描述,由此图可以看出:

  (1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。

  (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

图1眼图

  (3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。

  (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

  (5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。

  (6)横轴对应判决门限电平。

  下面就针对“眼图”这个话题和大家一起探讨下。

  1 串行数据

  串行信号种类繁多,在图2所示的有PCIExpress,RapidIO,DVI,S-ATA,USB,SDH,XAUI,等,其实现在的流行总线还远不止这些。每年都出来一些新流行的串行总线。每些总线差不多都有一个权威机构来定义该总线的信号标准和测试规范,这些机构成员多是由来自于不同公司的专家兼职担任。当然,关于PC的串行总线差不多由Intel来领导。图3所示某基于IntelChipset的笔记本电脑的框架图中的各种总线,除了DDR和FSB是并行数据之外,其它都是串行数据了。这些权威机构除了定义规范,当然也会有一些利益博弈。所以有新的利益集团(这是一个中性的词)策划推广的时候就可能有新的总线规范出台,这就象3G有三种标准一样。

图2 串行数据的整体特点

  信号速率不断加倍再加倍,2004年我刚到力科的时候,主流的串行信号速率在PC行业是2.5Gb/s,在通信行业是3.125Gb/s,如今,PC行业已Double到5Gb/s,通信行业已Double到6.25Gb/s,而且PC行业的8Gb/s,通信行业的12.5Gb/s似乎已指日可待。速率越来越高,并行数据必然要让位于串行数据。串行数据传输的典型结构框图如图3所示,纵然千变万化,都是“两根差分线”。

图3 某笔记本电脑架构示意图



  相比于并行数据,串行数据的优点是:

  a信号线的数量减少

  b 消除了并行数据之间传输的延迟问题

  c 因为时钟是嵌入到数据中的,数据和时钟之间的传输延迟也同样消除了

  d 传输线的PCB设计也更容易些

  e 信号完整性测试也更容易

图4 串行信号实例

  串行数据的测试点包括了芯片的发送端和接收端等不同节点。描述串行数据的常用单位是波特率和UI,譬如3.125Gb/s表示为每秒传送的数据比特位是3.125G比特(byte),对应的一个单位间隔(1UI)表示为一个比特位的宽度是波特率的倒数,1UI=1/(3.125Gb/s)=320ps。现在比较常见的串行信号码形是NRZ码。正电平表示”1”,负电平表示“0”。图三所示是示波器捕获到的一组串行信号,虚线之间的时间间隔代表了一个UI,图中对应的码型是101100101010001。

  2 眼图的基本概念

  眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时在示波器上观察到的一种图形。观察眼图的方法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形像人的眼睛,故称 为 “眼图”。从“眼图”上可 以观察出码间串扰和噪声的影响,从而估计系统优劣程度。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

  眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。图6的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。图7的眼图“眼睛里布满血丝”,这表明信号质量太差,可能是测试方法有错误,也可能是PCB布线有明显错误。图8的眼图非常漂亮,这可能是用采样示波器测量的眼图。

图5 眼图定义

图6 “双眼皮”眼图

  由于眼图是用一张图形就完整地表征了串行信号的比特位信息,所以成为了衡量信号质量的最重要工具,眼图测量有时侯就叫“信号质量测试”。此外,眼图测量的结果是合格还是不合格,其判断依据通常是相对于模板而言的。模板规定了串行信号“1”电平的容限,“0”电平的容限,上升时间、下降时间的容限。所以眼图测量有时侯又被称为“模板测试(MaskTest)”。模板的形状也各种各样,通常的NRZ信号的模板如图5和图8蓝色部分所示。在串行数据传输的不同节点,眼图的模板是不一样的,所以在选择模板时要注意具体的子模板类型。如果用发送端的模板来作为接收端眼图模板,可能会一直碰模板。但象以太网信号、E1/T1的信号,不是NRZ码形,其模板比较特别。当有比特位碰到模板时,我们就认为信号质量不好,需要调试电路。有的产品要求100%不能碰模板,有的产品是允许碰模板的次数在一定的概率以内。(有趣的是,眼图85%通过模板的产品,功能测试往往是没有问题的)示波器中有测量参数可自动统计出碰到模板的次数。此外,根据“侵犯”模板的位置就能知道信号的哪方面有问题从而指导调试。如图九表明信号的问题主要是下降沿太缓,图10表明1电平和0电平有“塌陷”,可能是ISI问题导致的。

图7 “眼睛布满血丝”的眼图

图8 最漂亮的“眼睛”

图9 下降沿碰到模板的眼图

图10 “1”电平和“0”电平有“塌陷”的模板

  和眼图相关的眼图参数有很多,如眼高、眼宽、眼幅度、眼交叉比、“1”电平,“0”电平,消光比,Q因子,平均功率等。图11表示幅度相关的测量参数的定义。“1”电平和”0”电平表示选取眼图中间的20%UI部分向垂直轴投影做直方图,直方图的中心值分别为“1”电平和“0”电平。眼幅度表示“1”电平减去“0”电平。上下直方图的3sigm之差表示眼高。图12、13、14、15表示了其它一些眼图参数的定义,一目了然,在此不再一一描述。不过,有经验的工程师知道,在眼图形象很糟糕的时候,眼图参数测试的结果显得很不准确。这时候,建议用力科的自定义眼高测量方法来测量,如图16所示。

图11 眼图参数定义

图12 眼图参数定义

图13 眼图参数定义

图14 眼图参数定义

图15 眼图参数定义

图16 自定义眼高测量方法


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭