当前位置:首页 > 芯闻号 > 技术解析
[导读]对于充电ic,不知大家了解多少。充电ic的应用,使得我们的生活更为便利。为增进大家对充电ic的了解,本文将讲解锂离子电池充电ic的设计方案。如果你对充电ic具有浓厚兴趣,不妨继续往下阅读哦。

对于充电ic,不知大家了解多少。充电ic的应用,使得我们的生活更为便利。为增进大家对充电ic的了解,本文将讲解锂离子电池充电ic的设计方案。如果你对充电ic具有浓厚兴趣,不妨继续往下阅读哦。

锂离子和锂聚合物电池具有工作电压高、无记忆效应、工作温度范围宽、自放电率低及比能量高优点。使其能够较好地满足便携式设备对电源小型化、轻量化、长工作时间和长循环寿命以及对环境无害等要求,同时随着锂离子电池产量的提高,成本的降低,锂离子电池以其卓越的高性价比优势在便携式设备电源上取得了主导地位,这也使得锂离子电池充电器得到了巨大的发展和广阔的市场。本文设计一款针对单节锂电池的线性充电器IC,采用CMOS工艺设计了一款具有智能热调整功能的单片线性锂离子电池充电器IC,在此设计的线性锂离子电池充电器IC在恒流/恒压充电模式的基础上,增加了涓流充电模式和智能热调整模式。

1 线性锂离子电池充电器的整体结构设计

图1所示为本文锂离子电池充电器的整体功能模块图。这些子模块包括。基准电压源、基准电流源、欠压闭锁模块、恒流充电放大器、恒压充电放大器、智能热调整放大器、钳位放大器、振荡器、计数器、电池温度保护模块、功率管衬底保护模块、逻辑模块以及多个比较器模块。

考虑芯片的实际应用,本文设计的锂离子电池充电器具有以下几个特点:

(1)芯片的温度保护方面在充电过程中,当电池的电压达到涓流充电跳变电压门限而进入恒流阶段时,恒流阶段为大电流充电,由于本文的功率管为PMOS,在负载电池和电源之间只有该功率管,此时电池电压较低,芯片功率耗散达到最大。其功率耗散为:

P=(Vcc-VBAT)Icc (1)

大功率耗散将导致芯片的温度急剧上升,因此设置了一个智能的热反馈回路。当芯片温度上升到热反馈温度点105℃时,启动热反馈回路,使芯片温度维持在105℃。当电池电压进一步升高时,由式(1)可知,功率耗散逐渐降低,在较小的功率耗散下,芯片的温度会逐渐降低。此时退出智能热调整工作模式,进入恒流充电模式,使用大电流Icc对电池充电,或者直接进入恒压充电阶段。该热反馈回路的使用,使充电的速率最大化,同时用户无需担心芯片的温度过高。

(2)成本方面。本文介绍的芯片采用CMOS工艺设计,成本低,工艺易于实现。

(3)与用户的交互式管理方面。芯片提供了多个外部用户编程引脚以方便用户对芯片的管理和使用。在充电电流的控制方面,用户可以通过连接1只电阻至芯片一个引脚对充电电流进行编程;在充电最终电压的控制方面,用户可通过将芯片的一个引脚接高电平或低电平来设置最终充电电压为4.1 V或4.z V,以适应对使用不同的负极材料的锂离子电池进行充电;在充电时间的控制上,用户可通过连接1只电容至芯片1个引脚对充电时间进行编程,满足用户不同的充电时间要求。芯片设计预计达到的特性和参数见表1.

芯片引脚的外部连接如图2所示。在图2中,CHRG,FAULT,ACPR三引脚分别与一个1 kΩ的电阻以及一个发光二极管相连,用于指示芯片的充电状态;4.7μF电容为电源Vcc的旁路电容,在电池BAT引脚处接有一个ESR为1 Ω的1 μF旁路电容,用于在没有电池时,将纹波电压保持在低水平。NTC引脚处,一个10 kΩ的负温度系数的电阻RNTC与4 kΩ电阻相串连,将RNTC上的分压作为NTC引脚的输入。

2 线性锂离子电池充电器的整体仿真结果

仿真中,为缩短仿真时间,将电池等效为一个大电容CBAT,其等效串连电阻为RESR.2为对预设定的充电器芯片特性参数表仿真后得到的结果。

2.1 电器充电过程波形图

图3~图5是充电器的充电过程在不同的条件下仿真得到的结果。为缩短仿真时间,电池预设的电压为2.3 V,以便充电过程能够迅速地由涓流充电模式过渡到恒流充电模式。

在仿真中,RPROG的值设置为3 kΩ,涓流充电电流为50 mA,恒流充电电流为500mA;SEL 引脚接地电位,电池的最终充电电压为4.1V.由图3~图5中可以知,在各种工作条件下,充电器都能正常工作。在图4中充电的过程与温度的关系曲线中,当温度为125℃时,充电电流为零,这是由于芯片中的智能热调整温度Tc是105℃,智能热调整电路正常运行使芯片的充电电流在125℃时降至零,电池的电压一直维持在2.3 V.

以上便是此次小编带来的“充电ic”相关内容,希望大家对本文讲解的内容具备一定的认知。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭