当前位置:首页 > 电源 > 电源-能源动力
[导读]什么是铅酸电池?有什么知识解析?铅酸电池技术发展100年来基本没什么变化。虽然在化学和结构上已有改进,但引起电池发生故障有一个共性的因素。这个故障原因是:硫酸盐堆积在极板上导致失效的结果,解决这些问题最有效的方法是应用脉冲技术。脉冲技术有助于排除电池这些故障,它可以保持高的活性物质反应,使电池内部平衡,容易接受外接充电。这样一来,节约了因置换电池带来的各种相关费用。

什么是铅酸电池?有什么知识解析?铅酸电池技术发展100年来基本没什么变化。虽然在化学和结构上已有改进,但引起电池发生故障有一个共性的因素。这个故障原因是:硫酸盐堆积在极板上导致失效的结果,解决这些问题最有效的方法是应用脉冲技术。脉冲技术有助于排除电池这些故障,它可以保持高的活性物质反应,使电池内部平衡,容易接受外接充电。这样一来,节约了因置换电池带来的各种相关费用。

技术介绍

专家预言:铅酸电池作为在电池电源领域里以第一位置将延续到下一世纪。但值得重视的问题是,多数电池的工作状态不能达到当今科技先进交通工具的需求。按说,铅酸电池的反应材料能维持8年—10年或更长一些,但事实上做不到。现在的电池平均寿命是6—48个月。而能用48个月的电池仅占30%。大部分电池则提前衰老和失效。影响电池寿命的一系列问题的原因是:硫酸盐的堆积,而最有效解决这些问题的方法是脉冲技术。

早在1989年就有第一个专利,利用脉冲技术提高电池的实用性,延长电池寿命。它的工作原理:使电池一直维持高的活性物质反应,使电池内部平衡,易接受充电。这种技术可提供大的放电容量,接受充电快,而且能使用持久。(换言之,延长电池工作寿命)

现在让我们来了解一下脉冲技术是如何有益于电池,其工作原理是什么。首先让我们重温一下电池的工作原理:依照国际电池理事会手册第11版:“蓄电池是属电化学原理设计范畴,电池产生的电能是由存储的化学能转变的。在车辆和动力机械设备上需要电池,它的三种主要功能是:

(1)、供电给点火系统,使发动机启动。

(2)、给发动机外的电器设备供电。

(3)、对电器系统起到稳压作用,使输出平滑和降低瞬间有电器系统发生高压。”

电池由两种不同材料构成(铅和二氧化铅),这两种材料置于硫酸液中反应产生电压,在放电过程,正极铅板上的活性材料与电解液的硫酸根生成PbSO4。同时,负极板上的活性材料也与电解液硫酸根生成PbSO4。所以,放电的结果使正负极板都覆盖了硫酸铅(PbSO4)。电池的恢复是通过对它反方向充电。

在充电过程,化学反应状态基本是放电的逆反应。这时正负极板上的硫酸铅(PbSO4)分解变为原来状态,即铅和硫酸根,水分解出“H”和“O”原子,当分离后的硫酸根与“H”结合还原为硫酸电解液。

从上所述,蓄电池的工作基本原理是硫酸和铅进行离子交换的化学反应过程形成的能量。在能量交换过程中,其反应生成物—硫酸铅在极板上是“临时”的。但值得注意的是,在充电还原过程,极板上的硫酸铅并不能全部溶解而堆在极板上。这种堆积物是电化学反应的剩余物,占据了极板的位置。这就是说,极板的有效反应材料在不断减少,这是导致电池失效的主要原因。(因硫酸铅导致电池失效,这种现象的通俗叫法是—极板盐化)

极板盐化问题:大多数电池失效归咎于硫酸铅的堆积。当硫酸铅分子的能量大于一个极限低值的时候,它们从极板上溶解,返回到液体状态。那么,它们可以接受再充电。但实际上,总有一部分的硫酸盐是不能返回电解液里的,而是贴附在极板上,最终形成不可溶解的晶体。硫酸盐结晶体是这样形成的:这些不能参与反应的单个硫酸盐分子的核心能量都处于极低状态,它逐步吸附其它因能量极低的硫酸盐分子。当这些分子堆积,并紧密地结合时,就形成一个晶体。这种晶体不能有效地溶解到电解液里去。这些晶体的存在,占据了极板的位置,使极板失去了充放电的能力。所以,极板被覆盖的这一点或这一部分都相当于是死点。

依照BCI手册58页说:“电池的本质是化学类器材,它的充电特性常常是由电池自身化学变化而改变的。例如,硫酸盐应是正常的化学反应生成物,但在非正常状态下,它变成多余物质而成为影响化学反应的主要问题,而这些多余的硫酸盐在极板上不断堆积,又长期被忽略。另外,新电池如存放时间过长,也会出现这种状态。当电池严重盐化时,就不能接受发电机对它的快而满的补充电。同样,也不能作满意的放电。随着盐化加剧,最终因电池不能接受充电和放电而失效。”第56页上说:“充电电压是受温度和电解液浓度、电解液接触极板的面积、电池的年限、电解液纯度等因素影响。极板上的盐化结晶很硬,使内阻增大。”

超过80%的电池是因为这些盐化晶体堆积而引起失效。这些晶体形成的速度、面积及硬度是与时间、电池充电状态、能量储备的使用周期有紧密关联。电池上的盐化结晶物堆积是非常麻烦的。以下几种情况是不可避免要产生盐化:

1、电池在安装使用前曾长时间搁置储存。实际上电池一旦加上硫酸液后就开始了化学反应而产生盐化物。所以,新电池的搁置也会盐化,导致在交通运输工具上安装不久的新电池就失效。

2、交通工具长时间静止不工作。

3、电池受到侵蚀使充电期间内阻增加,引起充电不足的情况。

4、持续过放电。

5、温度影响。例如,当气温转热,随温度每增加10度,盐化速率呈2倍增长。在充电期间,如外界温度高,当电池的温度达75度时,内阻会增大,致使充电不足情况发生。当温度转冷,交通工具的润滑油变稠,这就需要更大的动力去启动车辆,也就是说,需要电池放电能力更大。其结果,加快了极板上盐化物的堆积。如果留意一下电池过放电的情况,就知道这时候的电池电解液凝固,这种情况极大地伤害了极板。一般情况下,充电达100%时,电解液的比重是1.27左右,这时候的电解液凝固温度是–83华氏;当比重在1.2左右时,凝固温度是–17华氏;若比重在1.14时(也称完全放电),这时仅在8华氏就凝固。

6、在充电不足的情况下,电池不能供给最大启动电流,这样对频繁使用的车辆经常发生死火。依照BIC手册说:“一辆使用一个充不满电的电池时,就有可能使发动机转速慢和空转不能启动,消耗电能。而反过来,电池也得不到发电机在最佳速率下充电。其结果,虽然电池用全天候充电,仍不能充满电。而又经常性地充电不足,电池盐化加重。这样恶性循环下去,最终使电池完全失效。

综上所述,硫酸盐是能量转换过程必然之物,但硫酸盐的结晶物确是一个严重问题,而不是硫酸盐本身,这需要更多的人去了解这个问题的严重性—硫酸盐结晶使电池失效。其失效的现象包括:

1、极板弯曲:极板某处有硫酸盐结晶削弱电能的接受,造成电池极板的某处过充电,而这种过充电使此处温度升高,使这里的极板弯曲。

2、盐化使极板上栅格网眼的反应物脱落,会导致过充电,极板弯曲。

3、短路:由于盐化使内阻增加,极板弯曲,接触了另一极性的极板而发生短路或破坏了支撑极板的框架。

4、活性物质的脱落:盐化结晶物使内阻增大,造成局部过充电,导致极板有裂缝和裂缝的物质脱落。

因此,应用脉冲技术去保护极板是最合适的,也有助于减低机械震动引起电池极板的损害。过去,电池盐化后,被认为无用而丢弃,或拉到远处修理。但现在,脉冲技术能很好地解决这个问题。以上就是铅酸电池技术的解析,希望能给大家帮助。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭