当前位置:首页 > 通信技术 > 通信网络
[导读] 引言 在频谱资源日益宝贵的今天,OFDM调制,以其较高的频谱利用率,广泛应用于多种无线通信系统之中,比如802.11a。 通信系统的另外一个重要指标就是系统的可靠性。高可靠性的系

引言

在频谱资源日益宝贵的今天,OFDM调制,以其较高的频谱利用率,广泛应用于多种无线通信系统之中,比如802.11a。

通信系统的另外一个重要指标就是系统的可靠性。高可靠性的系统需要高性能的信道编解码方案。到目前为止,信道编码主要形成了包括分组编码和卷积编码在内两大类编码体系。其中,分组码主要包括汉明码、RS(Reed-Solomon)码、BCH(Bose-Chaudhuri-Hoc-quenghem)码。最近提出的LDPC码也可以纳入分组码一类。卷积码包括CC(Convolutional-Coding)编码和以CC编码作为分量码的Turbo码。

RS码是一种多元BCH码,属于线性分组循环码,具有同时纠正突发错误和随机错误的能力,且结构相对简单,是应用最广的差错控制编码方式之一。卷积码中的维特比译码在编码增益和数据传输率方面都有较优异的性能。

基于以上的分析,本文将RS与CC通过交织器的连接,级联应用于OFDM系统之中。通过计算机仿真,具体分析其性能指标。

1 、设计原理

1.1 RS设计原理

1.1.1 编码

RS编码是一种定义在伽罗华域GF(2m)上的运算。(n=255,k=239)RS码可由GF(28)导出。k表示待编码的信息个数,n表示编码后的数据个数,n-k=16就是添加的冗余个数。(255,239)RS码能够检测16,纠正8个错误。

因为RS码是循环码,所以它的监督码元的生成由生成多项式决定。生成多项式的幂为监督码元数,可取本原元a的连续n-k=16次幂作为生成多项式的根。因此可以得到(255,239)RS码的生成多项式是:

由于RS码为循环码字,按照循环码的系统编码方法,可得到RS编码。信息多项式为m(X),监督多项式为p(X),商多项式为q(X),那么Xn-km(X)=q(X)g(X)+p(X)可表示为p(X)=Xn-km(X)modg(X),最终码的子多项式U(X)表示为:U(X)=p(X)+Xn-km(X)。在利用算法实现时,求余数多项式p(X)的过程太过于复杂,所以选用比较容易的LFSR移位编码作为编程实现,即(n-k)阶移位寄存器的系统编码。图1为(255,239)RS码的16阶位寄存器的系统编码框图。图1所示寄存器的每个状态具有8 b的码元。系数g0,g1,g2,…,g14,g15是生成多项式的系数。

(255,239)RS码的16阶位寄存器的系统编码形成系统码字的步骤如下:

(1)开关1在开始的k个时钟周期内合上,使消息码元进入移位寄存器的(n-k)级。

(2)开关2在开始的k个时钟周期内处于下面的位置,使得消息码元同时直接传输到一个输出寄存器中。待第k个消息码元传输到输出寄存器,开关1断开,开关2移到上面位置。随后的(n-k)个时钟周期用于清除移位寄存器中的监督码元,这可以通过将其移到输出寄存器而完成。

全部的时钟周期数等于n,输出寄存器存储的内容就是码字多项式p(x)+Xn-km(X)。p(X)和m(X)分别表示监督码元和消息码元多项式形式。

1.1.2 译码

RS译码采用与编码相同的本原多项式,参数与编码器也相同。具体实现框图如图2所示。

由图2可见,RS解码主要分为错误检测和错误纠正两个步骤。具体可分为:

(1)伴随多项式的计算;

(2)确定错误位置多项式;

(3)确定错误估值函数;

(4)求解错误位置数和错误数值,并进行纠正。

1.2 CC设计原理

1.2.1 编码

卷积编码我们采用(2,1,7)卷积编码器,其X,Y状态转移多项式为(171,133)。每个时钟周期输入1个bit信息,输出2个bit信息。编码器结构如图3所示。

1.2.2 译码

Viterbi译码的框图如图4所示。

由图4可见,译码器主要分为三个步骤:

(1)分支度量计算(bmg);

(2)加比选计算(acs);

(3)回溯输出译码结果(trace_back)。

1.3 交织器设计原理

OFDM系统中交织器的主要作用是抵抗信道的突发成片错误。交织器的设计目的就是把一组的成片错误分散到不同的分组之中。在这里选用实现较为简单的行列交织器。系统设计的时候,发射端,RS编码输出的数据按列写入交织器,CC编码器按行读取交织器内的数据;接收端,CC译码器按行向交织器写入译码后数据,RS译码器按列读取待译码数据。

2、 仿真与分析

OFDM系统仿真参数如下:使用1 024个子载波,其中,768个传输数据,256个空载波,数据子载波中有12个导频子载波,有效数据占736个子载波,(255,239)的RS编码,(2,1,7)卷积编码,QPSK调制,外交织为45×32,内交织均为23 x 32,限幅滤波器、上下采样滤波器的系数通过Matlab产生,信道采用cost207中的TU六径模型,理想同步,LS信道估计。每种信噪比条件下,误码率取1 000次仿真平均值。

通过计算机Matlab仿真,可以得到OFDM系统分别采用级联编码、RS编码、CC编码和无编码编码情况下的性能曲线,如图5所示。

通过曲线图可以看到,在同样的系统参数条件下,不同的编码增益具有较大的差异。其中,级联编码具有最好的性能。在中高误码率条件下,级联编码比RS和CC单独编码大约有2 dB编码增益,最大值可达4 dB左右。在中低误码率条件下,卷积码与级联码的性能相接近,这主要是因为在中低误码率条件下,RS码的性能减弱,中和了级联码的性能,使得主要的编码增益来自于卷积码。

3、 结论

通过Matlab环境,搭建出使用RS编码和卷积编码通过交织器级联作为信道编码方案的OFDM系统。仿真表明,级联编码的引入,使得OFDM系统性能具有显著的提高。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭