虹膜识别技术的过程_虹膜识别的发展历程
扫描二维码
随时随地手机看文章
虹膜识别技术是基于眼睛中的虹膜进行身份识别,应用于安防设备(如门禁等),以及有高度保密需求的场所。虹膜识别技术是人体生物识别技术的一种。
人的眼睛结构由巩膜、虹膜、瞳孔﹑晶状体、视网膜等部分组成。虹膜是位于黑色瞳孔和白色巩膜之间的圆环状部分,其包含有很多相互交错的斑点、细丝、冠状、条纹、隐窝等的细节特征。而且虹膜在胎儿发育阶段形成后,在整个生命历程中将是保持不变的。这些特征决定了虹膜特征的唯一性,同时也决定了身份识别的唯一性。因此,可以将眼睛的虹膜特征作为每个人的身份识别对象。
虹膜识别技术的过程
虹膜识别就是通过对比虹膜图像特征之间的相似性来确定人们的身份。虹膜识别技术的过程一般来说包含如下四个步骤:
1.虹膜图像获取
使用特定的摄像器材对人的整个眼部进行拍摄,并将拍摄到的图像传输给虹膜识别系统的图像预处理软件。
2.图像预处理
对获取到的虹膜图像进行如下处理,使其满足提取虹膜特征的需求。
虹膜定位:确定内圆、外圆和二次曲线在图像中的位置。其中,内圆为虹膜与瞳孔的边界,外圆为虹膜与巩膜的边界,二次曲线为虹膜与上下眼皮的边界。
虹膜图像归一化:将图像中的虹膜大小,调整到识别系统设置的固定尺寸。
图像增强:针对归一化后的图像,进行亮度、对比度和平滑度等处理,提高图像中虹膜信息的识别率。
3.特征提取
采用特定的算法从虹膜图像中提取出虹膜识别所需的特征点,并对其进行编码。
4.特征匹配
将特征提取得到的特征编码与数据库中的虹膜图像特征编码逐一匹配,判断是否为相同虹膜,从而达到身份识别的目的。
虹膜识别的发展历程
追溯至19世纪80年代。1885年,ALPHONSEBERTILLON将利用生物特征识别个体的思路应用在巴黎的刑事监狱中,当时所用的生物特征包括:耳朵的大小、脚的长度、虹膜等。
1987年,眼科专家ARAN SAFIR和LEONARDFLOM首次提出利用虹膜图像进行自动虹膜识别的概念,到1991年,美国洛斯阿拉莫斯国家实验室的JOHNSON实现了一个自动虹膜识别系统。
1993年,JOHNDAUGMAN实现了一个高性能的自动虹膜识别原型系统。今天,大部分的自动虹膜识别系统使用DAUGMAN核心算法。
虹膜是位于眼睛黑色瞳孔和白色巩膜之间的圆环状部分,总体上呈现一种由里到外的放射状结构,由相当复杂的纤维组织构成,包含有很多相互交错的类似于斑点、细丝、冠状、条纹、隐窝等细节特征,这些特征在出生之前就以随机组合的方式确定下来了,一旦形成终生不变。虹膜识别的准确性是各种生物识别中最高的。
·采集
从直径11mm的虹膜上,Dr.Daugman的算法用3.4个字节的数据来代表每平方毫米的虹膜信息,这样,一个虹膜约有266个量化特征点,而一般的生物识别技术只有13个到60个特征点。266个量化特征点的虹膜识别算法在众多虹膜识别技术资料中都有讲述,在算法和人类眼部特征允许的情况下,Dr. Daugman指出,通过他的算法可获得173个二进制自由度的独立特征点。在生物识别技术中,这个特征点的数量是相当大的。
·算法:
第一步是通过一个距离眼睛3英寸的精密相机来确定虹膜的位置。当相机对准眼睛后,算法逐渐将焦距对准虹膜左右两侧,确定虹膜的外沿,这种水平方法受 到了眼睑的阻碍。算法同时将焦距对准虹膜的内沿(即瞳孔)并排除眼液和细微组织的影响。 单色相机利用可见光和红外线,红外线定位在700-900mm的范围内(这是IR技术的低限,美国眼科学会在他们对macularcysts研究中使用同样的范围。) 在虹膜的上方,算法通过二维Gabor子波的方法来细分和重组虹膜图象,第一个细分的部分被称为phasor,要理解二维gabor子波的原理需要很深的数学知识。
·精确度:
虹膜识别技术是精确度最高的生物识别技术,具体描述如下:两个不同的虹膜信息有75%匹配信息的可能性是1:106等错率:1:1200000两个不同的虹膜产生相同虹膜代码的可能性是1:1052。
·录入和识别:
虹膜的定位可在1秒钟之内完成,产生虹膜代码的时间也仅需1秒的时间,数据库的检索时间也相当快。处理器速度是大规模检索的一个瓶颈,另外网络和硬 件设备的性能也制约着检索的速度。由于虹膜识别技术采用的是单色成像技术,因此一些图像很难把它从瞳孔的图像中分离出来。但是虹膜识别技术所采用的算法允许图像质量在某种程度上有所变化。相同的虹膜所产生的虹膜代码也有25%的变化,这听起来好像是这一技术的致命弱点,但在识别过程中,这种虹膜代码的变化只占整个虹膜代码的10%,它所占代码的比例是相当小的。
小编推荐阅读:虹膜识别安全吗_虹膜识别不出来怎么办