当前位置:首页 > 公众号精选 > 嵌入式客栈
[导读] 点上方嵌入式客栈,置顶/星标干货及时送达 【导读】:在嵌入式系统中经常需要采集模拟信号,采集模拟信号的信号链中难免引入干扰,那么如何滤除干扰呢?今天就来个一步一步描述如何设计部署一个IIR滤波器到你的系统。写这篇文章考虑到很多粉丝是做单片机系统

 点上方嵌入式客栈置顶/星标干货及时送达

【导读】:在嵌入式系统中经常需要采集模拟信号,采集模拟信号的信号链中难免引入干扰,那么如何滤除干扰呢?今天就来个一步一步描述如何设计部署一个IIR滤波器到你的系统。写这篇文章考虑到很多粉丝是做单片机系统开发的,经常会需要采集模拟信号,系统中往往存在各种各样的干扰,干扰常常让人一筹莫展,所以花了一周时间整理出IIR滤波器设计部署的干货文章,照此一步一步做,你必会解决大部分干扰问题。

编外语: 文章写作过程虽谈不上呕心沥血,但也可算绞尽脑汁。 在此也呼吁粉丝朋友积极参与互动,或点在看,或分享,或留言评论,当然如能买杯咖啡,那就更好啦!如果大家对此类话题感兴趣,我会写出系列信号处理文章以答谢各位的厚爱,如果大家对此类话题不感兴趣,就不在花过多时间整理发布了。在此感谢各位关注厚爱!

何为IIR滤波器?

无限冲激响应(IIRInfinite Impulse Response)是一种适用于许多线性时不变系统的属性,这些系统的特征是具有一个冲激响应h(t),该冲激响应h(t)不会在特定点上完全变为零,而是无限期地持续。这与有限冲激响应(FIRFinite Impulse Response)系统形成对比,在有限冲激响应(FIR)系统中,对于某个有限T,在时间t> T时,冲激响应确实恰好变为零。线性时不变系统的常见示例是大多数电子和数字滤波器。具有此属性的系统称为IIR系统或IIR滤波器。对于什么叫冲激响应,这里就不展开解释了,有兴趣的可以查阅相关书籍。

这是常见的教科书式数学严谨定义,很多人看到这一下就蒙了,能说人话吗?

线性时不变系统理论俗称LTI系统理论,源自应用数学,直接在核磁共振频谱学、地震学、电路、信号处理和控制理论等技术领域运用。它研究的是线性、非时变系统对任意输入信号的响应。虽然这些系统的轨迹通常会随时间变化(例如声学波形)来测量和跟踪,但是应用到图像处理和场论时,LTI系统在空间维度上也有轨迹。因此,这些系统也被称为线性非时变平移,在最一般的范围理论给出此理论。在离散(即采样)系统中对应的术语是线性非时变平移系统。由电阻、电容、电感组成的电路是LTI系统的一个很好的例子。比如一个运放系统在一定频带范围内满足信号的时域叠加,输入一个100Hz和200Hz正弦信号,输出频率是这两种信号的线性叠加。

用数学对LTI系统描述:

线性:输入x1(t),产生响应 y1(t),而输入x2(t),产生相应y2(t) , 那么放缩和加和输入 ax1(t)+bx1(t), 产生放缩、加和的响应ay1(t)+by1(t),其中a和b是标量,对于任意的有:

输入  

产生响应为:

时不变性:指如果将系统的输入信号延迟δ秒,那么得到的输出响应也相应延时δ秒。用数学描述,也即如果输入x1(t),产生响应y1(t) ,而输入x1(t+δ) ,产生响应 y1(t+δ)

这么描述还是不易懂,来个图,有图有真相:

假定一个信号放大电路对100Hz正弦信号放大2倍,则输出为:

而对200Hz的正弦信号,假定其放大倍数为1.7倍。(做过运放电路设计的朋友应该有经验,在其同频带其放大倍数往往并不平坦,也即幅频响应在频带内不平坦,这是比较常见的)。也即输入为:

则响应为:


那么如果输入100Hz和200Hz的时域叠加信号,则其输入为:

则其响应为:

由这些图可看出,输入信号的形状保持不变,输出为对应输入的线性时域叠加。对于时不变,就不用图描述了,在一个真实电路中,如果输入延迟一定时间,则响应对应延迟相同时间输出。

上面这么多文字只是为了描述在什么场合可以使用IIR滤波器对信号进行数字滤波。总结而言,就是在线性时不变系统中适用。换言之,在大多数电路系统中我们都可以尝试采用IIR滤波器进行数字滤波。

那么究竟什么是IIR滤波器呢?从数字信号处理的书籍中我们能看到这样的Z变换信号流图:

Z的-1次方表示延迟一拍,在数字系统中表示对于输入信号而言,即为上一次采样值,对于输出而言,即为上一次的输出值。


在时域中对于上述流图,用时域描述即为:

如果熟悉Z变换,则Z变换传递函数为:

上述数字滤波器,如果从编程的角度来看,x(n-1),表示上一次的信号,可能是来自ADC的上次采样,而y(n-1)则为上一次滤波器的输出值,对应就比较好理解x(n-N)就表示前第n次输入样本信号,而y(n-M)则为前第M次滤波器的输出。

说了这么多,只是为了更好的理解概念,只有概念理解正确,才能使用正确。概念理解这对工程师而言,非常之重要。

如何设计呢?

MATLAB提供了非常容易使用的FDATool帮助我们设计数字滤波器,真正精彩的地方开始了,让我们拭目以待究竟如何一步一步设计并实施一个IIR滤波器。首先打开MATLAB,在命令行中敲fdatool,然后敲回车

弹出窗体就是fdatool了,如下:

在设计具体,有几个相关概念需要澄清:
Fs :采 样率,单位为Hz,真实部署在系统中,请务必确保样本是按照恒定采样率进行采样,否则将得不到想要的效果。
Fpass : 通频带,单位为Hz,即系统中期望通过的最高频率。
Fstop : 截至频率,即幅频响应的-3dB处的频率,这个如不理解,请自行查阅相关书籍。
分贝dB : 这是一个无单位反应输出与输入倍数的一个术语。电学中分贝与放大倍数的转换关系为:
  • A(V)(dB)=20lg(Vo/Vi);电压增益,Vo 为输出电压,Vi为输入电压

  • A(I)(dB)=20lg(Io/Ii);电流增益,Io 为输出电流,Ii为输入电流

  • A(p)(dB)=10lg(Po/Pi);功率增益,Po 为输出功率,Pi为输入功率

滤波器类型:这里有Butterworth(巴特沃斯)、Chebyshev Type I,Chebyshev Type II、(切比雪夫)、Elipic 等可选。

  • 巴特沃斯 Butterworth,也被称作最大平坦滤波器。巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有纹波。

  • 切比雪夫 Chebyshev,是在通带或阻带上频率响应幅度等波纹波动的滤波器。切比雪夫滤波器在过渡带比巴特沃斯滤波器的衰减快,但频率响应的幅频特性不如后者平坦。

  • 椭圆 Elliptic,椭圆滤波器是在通带和阻带等波纹的一种滤波器。

  • …这里就不一一介绍了,有兴趣可以去查信号处理书籍。

就其特点,这里对其中几种略作介绍:

  • 巴特沃斯具有最平坦的通带。

  • 椭圆滤波器衰减最快,但是通带、阻带都有波纹。

  • 切比雪夫滤波器衰减比巴特沃斯快,但比椭圆滤波器慢,波纹区域可选择。

假设我们需要设计一个IIR滤波器,采样率为32000Hz, 有用信号频率在10000Hz内,设计IIR滤波器对信号进行数字滤波。这里为节省算力,我们指定滤波器的阶数,也即传递函数中N/M中的最大值,一般而言N大于M。

这里指定阶数为8阶,类型指定为巴特沃斯型IIR滤波器,输入阶数8阶,采样率32000Hz,然后点击Design Filter如下图所示:

其相频响应曲线如下:


除此之外,我们还可以将幅频与相频曲线放在一个频率坐标上去看设计结果:

导出滤波器参数,这里我们选择,

然后就得到了一个文件,保存2KHz_LPF.fcf,文件名随你喜欢。

文件内容如下:

Generated by MATLAB(R) 8.4 and the Signal Processing Toolbox 6.22.
Generated on: 27-Mar-2020 21:27:06

Coefficient FormatDecimal

Discrete-Time IIR Filter (real)                            
-------------------------------                            
Filter Structure    : Direct-Form IISecond-Order Sections
Number of Sections  : 4                                    
Stable              : Yes                                  
Linear Phase        : No                                   


SOS Matrix:                                                  
1  2  1  1  -1.7193929141691948  0.8610574795347461          
1  2  1  1  -1.5237898734101736  0.64933827386370635         
1  2  1  1  -1.4017399331200424  0.51723237044751591         
1  2  1  1  -1.3435020629061745  0.45419615396638446         

Scale Values:                                                
0.035416141341387819                                         
0.031387100113383172                                         
0.028873109331868367                                         
0.027673522765052503                                          

至此设计工作就结束了,马上进入滤波器的部署测试阶段。

这里有个概念需要略作解释:什么叫直接II型 SOS

所谓直接II型,SOS(second order section)理解很简单,本质是将IIR Z传递函数分解为上述二阶块的级联形式。

部署测试滤波器

到这里,没有经验的朋友可能会说,这么一堆参数我该咋用呢?

需要自己去写前面描述的计算公式吗?当然你也可以这么做,这里就不写了,ARM的CMSIS库已经帮大家设计好了种类繁多的数字信号处理函数实现了,而且经过了测试,这里直接拿来用即可。有兴趣自己写也不难,只要理解Z传递函数概念内涵,非常容易实现。这里我们采用32位浮点实现函数:

arm_biquad_cascade_df1_f32。该函数位于:

CMSIS\DSP\Source\FilteringFunctions\arm_biquad_cascade_df1_init_f32.c

CMSIS\DSP\Source\FilteringFunctions\arm_biquad_cascade_df1_f32.c

我们来看一看这个函数:

arm_biquad_cascade_df1_init_f32.c:

/*
*作用      :初始化滤波器
*S        :指向浮点SOS级联结构的实例。
*numStages:滤波器中二阶SOS的数量
*pCoeffs  :滤波器参数指针,参数按下列顺序存储
*          {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
*pState   :历史状态缓冲区指针
*/

void arm_biquad_cascade_df1_init_f32(
        arm_biquad_casd_df1_inst_f32 * S,
        uint8_t numStages,
  const float32_t * pCoeffs,
        float32_t * pState)

{
  /* Assign filter stages */
  S->numStages = numStages;

  /* Assign coefficient pointer */
  S->pCoeffs = pCoeffs;

  /* Clear state buffer and size is always 4 * numStages */
  memset(pState, 0, (4U * (uint32_t) numStages) * sizeof(float32_t));

  /* Assign state pointer */
  S->pState = pState;
}

arm_math.h 定义了须用到的结构体,对于本例相关的结构体为arm_biquad_casd_df1_inst_f32

typedef struct
{

  unsigned int numStages; /*2阶节的个数,应为2*numStages.        */
  float *pState;          /*状态系数数组指针,数组长度为4*numStages*/
  float *pCoeffs;         /*系数数组指针, 数组的长度为5*numStages.*/
} arm_biquad_casd_df1_inst_f32;

滤波器具体滤波函数为:

arm_biquad_cascade_df1_f32

/**
 *  *S       :指向浮点Biquad级联结构的实例.
 *  *pSrc    :指向输入数据块。
 *  *pDst    :指向输出数据块。
 *  blockSize:每次调用要处理的样本数。
 *  返回值    :无.
 */

void arm_biquad_cascade_df1_f32(
  const arm_biquad_casd_df1_inst_f32 * S,
  float * pSrc,
  float * pDst,
  unsigned int blockSize)

{
  float *pIn = pSrc;                         /*源指针     */
  float *pOut = pDst;                        /*目的指针    */
  float *pState = S->pState;                 /*状态指针    */
  float *pCoeffs = S->pCoeffs;               /*参数指针    */
  float acc;                                 /*累加器      */
  float b0, b1, b2, a1, a2;                  /*滤波器参数   */
  float Xn1, Xn2, Yn1, Yn2;                  /*滤波器状态变量*/
  float Xn;                                  /*临时输入     */
  unsigned int sample, stage = S->numStages; /*循环计数     */

  do
  {
    /* Reading the coefficients */
    b0 = *pCoeffs++;
    b1 = *pCoeffs++;
    b2 = *pCoeffs++;
    a1 = *pCoeffs++;
    a2 = *pCoeffs++;

    Xn1 = pState[0];
    Xn2 = pState[1];
    Yn1 = pState[2];
    Yn2 = pState[3];

    sample = blockSize >> 2u;

    while(sample > 0u)
    {
      /* 读第一个输入 */
      Xn = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      Yn2 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);

      /* Store the result in the accumulator in the destination buffer. */
      *pOut++ = Yn2;

      /* 每次计算输出后,状态都应更新. */
      /* 状态应更新为:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */

      /* Read the second input */
      Xn2 = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      Yn1 = (b0 * Xn2) + (b1 * Xn) + (b2 * Xn1) + (a1 * Yn2) + (a2 * Yn1);

      /* 将结果存储在目标缓冲区的累加器中. */
      *pOut++ = Yn1;

      /* 每次计算输出后,状态都应更新. */
      /* 状态应更新为:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */

      /*读第三个输入 */
      Xn1 = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      Yn2 = (b0 * Xn1) + (b1 * Xn2) + (b2 * Xn) + (a1 * Yn1) + (a2 * Yn2);

      /* 将结果存储在目标缓冲区的累加器中. */
      *pOut++ = Yn2;

      /* 每次计算输出后,状态都应更新. */
      /* 状态应更新为: */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      /* 读第四个输入 */
      Xn = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      Yn1 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn2) + (a2 * Yn1);

      /* 将结果存储在目标缓冲区的累加器中. */
      *pOut++ = Yn1;

      /* 每次计算输出后,状态都应更新. */
      /* 状态应更新为:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      Xn2 = Xn1;
      Xn1 = Xn;

      /* 递减循环计数器 */
      sample--;
    }

    /* 如果blockSize不是4的倍数,
    *请在此处计算任何剩余的输出样本。
    *不使用循环展开. */

    sample = blockSize & 0x3u;

    while(sample > 0u)
    {
      /* 读取输入 */
      Xn = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);

      /* 将结果存储在目标缓冲区的累加器中. */
      *pOut++ = acc;

      /* 每次计算输出后,状态都应更新。 */
      /* 状态应更新为:    */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      Xn2 = Xn1;
      Xn1 = Xn;
      Yn2 = Yn1;
      Yn1 = acc;

      /* d递减循环计数器 */
      sample--;
    }

    /*  将更新后的状态变量存储回pState数组中 */
    *pState++ = Xn1;
    *pState++ = Xn2;
    *pState++ = Yn1;
    *pState++ = Yn2;

    /*第一阶段从输入缓冲区到输出缓冲区.     */
    /*随后的numStages在输出缓冲区中就地发生*/
    pIn = pDst;

    /* 重置输出指针 */
    pOut = pDst;

    /* 递减循环计数器 */
    stage--;

  } while(stage > 0u);
}

开始测试:

#include <stdio.h>
#include <math.h>
/*
SOS Matrix:                                                  
1  2  1  1  -1.7193929141691948  0.8610574795347461          
1  2  1  1  -1.5237898734101736  0.64933827386370635         
1  2  1  1  -1.4017399331200424  0.51723237044751591         
1  2  1  1  -1.3435020629061745  0.45419615396638446         

Scale Values:                                                
0.035416141341387819                                         
0.031387100113383172                                         
0.028873109331868367                                         
0.027673522765052503  
做如下转换:
1.缩放
[1  2  1] * 0.035416141341387819
[1  2  1] * 0.031387100113383172
[1  2  1] * 0.028873109331868367
[1  2  1] * 0.027673522765052503
得到:
[0.035416141341387819  2*0.035416141341387819  0.035416141341387819]
[0.031387100113383172  2*0.031387100113383172  0.031387100113383172] 
[0.028873109331868367  2*0.028873109331868367  0.028873109331868367] 
[0.027673522765052503  2*0.027673522765052503  0.027673522765052503]
2.舍掉第四列参数
3.将后两列分别乘以-1,即:
0.035416141341387819  2*0.035416141341387819  0.035416141341387819  -1.7193929141691948  0.8610574795347461          
0.031387100113383172  2*0.031387100113383172  0.031387100113383172  -1.5237898734101736  0.64933827386370635         
0.028873109331868367  2*0.028873109331868367  0.028873109331868367  -1.4017399331200424  0.51723237044751591         
0.027673522765052503  2*0.027673522765052503  0.027673522765052503  -1.3435020629061745  0.45419615396638446 
这样就得到了滤波器系数组了
*/

#define IIR_SECTION 4                /*见前面设计输出为4个SOS块*/
static float iir_state[4*IIR_SECTION];/*历史状态缓冲区         */
const float iir_coeffs[5*IIR_SECTION]={
    
0.035416141341387819,2*0.035416141341387819,0.035416141341387819,1.7193929141691948,-0.8610574795347461,    0.031387100113383172,2*0.031387100113383172,0.031387100113383172,1.5237898734101736,-0.64933827386370635,    0.028873109331868367,2*0.028873109331868367,0.028873109331868367,1.4017399331200424,-0.51723237044751591,    0.027673522765052503,2*0.027673522765052503,0.027673522765052503,1.3435020629061745,-0.45419615396638446
};
static arm_biquad_casd_df1_inst_f32 S;
/*假定采样512个点*/
#define BUF_SIZE 512
#define PI 3.1415926
#define SAMPLE_RATE  32000 /*32000Hz*/
int main()
{
    
float raw[BUF_SIZE];
    
float raw_4k[BUF_SIZE];
    
float raw_out[BUF_SIZE];

    
float raw_noise[BUF_SIZE];
    
float raw_noise_out[BUF_SIZE];

    arm_biquad_casd_df1_inst_f32 S;
    FILE *pFile=fopen(
"./simulation.csv","wt+");
    
if(pFile==NULL)
    {
        
printf("file opened failed");
        
return -1;
    }

    
for(int i=0;i<BUF_SIZE;i++)
    {
/*模拟800Hz正弦幅度171,叠加幅度50随机噪声 */
raw[i] = 
0.5*1024.0/3*sin(2*PI*800*i/32000.0f)+rand()%50;
       raw_4k[i] = 
0.5*1024.0/3*sin(2*PI*4000*i/32000.0f);
       
/*模拟800Hz +4000Hz+随机噪声叠加输入 */
       raw_noise[i] = raw[i] + raw_4k[i];
    }
/*初始化滤波器,以及滤波*/
    arm_biquad_cascade_df1_init_f32(&S, IIR_SECTION, (
float *)&iir_coeffs[0], (float *)&iir_state[0]);
    arm_biquad_cascade_df1_f32(&S, raw, raw_out, BUF_SIZE);

    
for(int i=0;i<BUF_SIZE;i++)
    {
       
fprintf(pFile,"%f,",raw[i]);
    }

    
fprintf(pFile,"\n");
    
for(int i=0;i<BUF_SIZE;i++)
    {
        
fprintf(pFile,"%f,",raw_4k[i]);
    }
    
fprintf(pFile,"\n");
    
for(int i=0;i<BUF_SIZE;i++)
    {
        
fprintf(pFile,"%f,",raw_out[i]);
    }

    
/*初始化滤波器,以及滤波*/
    arm_biquad_cascade_df1_init_f32(&S, IIR_SECTION, (
float *)&iir_coeffs[0], (float *)&iir_state[0]);
    arm_biquad_cascade_df1_f32(&S, raw_noise, raw_noise_out, BUF_SIZE);

    
fprintf(pFile,"\n");
    
for(int i=0;i<BUF_SIZE;i++)
    {
        
fprintf(pFile,"%f,",raw_noise[i]);
    }

    
fprintf(pFile,"\n");
    
for(int i=0;i<BUF_SIZE;i++)
    {
        
fprintf(pFile,"%f,",raw_noise_out[i]);
    }

    fclose(pFile);

    
return 0;
}

利用csv文件,将模拟数据存储,直接用excel打开,将行数据生成曲线图如下:

有兴趣也可以写个界面直接显示,甚至绘制出谱线图,做进一步分析。

  • 第一幅图,为800Hz信号混入随机噪声的波形

  • 第二幅图,为4000Hz信号,对假定系统为无用干扰信号

  • 第三幅图, 为800Hz 混入随机噪声过滤后,已经很好的还原有用信号频率

  • 第四幅图, 为800Hz信号混入随机噪声,同时叠加4000Hz干扰的波形,对系统而言,从时域中,明显可见,有用信号已经完全扭曲

  • 第五幅图,为800Hz信号混入随机噪声,同时叠加4000Hz干扰的输入,经过该低通滤波器后的波形,与第三幅图基本一样,已经非常好的滤除了干扰信号。

总结

  • IIR滤波器在线性时不变系统中可以很好的解决工程中一般噪声问题

  • 如果需要设计带通、高通滤波器其步骤基本类似,只是滤波器的参数以及SOS块个数可能不一样而已

  • 需要提醒的时,IIR的相频响应不线性,如果系统对相频响应有严格要求,就需要采用其他的数字滤波器拓扑形式了

  • 实际应用中,如果阶数不高时,现在算力强劲的单片机或者DSP以及可以直接使用浮点处理。

  • 如果对处理速度有严格的实时要求,需要在极短时间进行滤波处理,可以考虑降低阶数,或采用定点IIR滤波算法实现。也或者将文中函数进行汇编级优化。

最近开的号,没有留言功能,设置了小程序留言功能,欢迎点下面进行留言讨论。

点击留言/查看留言

END

如果喜欢右下点个在看,也会让我倍感鼓舞

往期精彩推荐




▲深度解析U-Boot网络实现(长篇好文)
读U-Boot源码-C语言编程大法总结篇一
读U-Boot源码-C语言编程技巧总结篇二
基于Buildroot的Linux系统构建之根文件系统
U-Boot架构浅析

关注置顶: 扫描右下二维码关注公众号加星
讨论加群:扫描左下二维码添加,发送“加群”

关注

加群

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭