当前位置:首页 > 物联网 > 物联网技术文库
[导读] 对智能制造最大的误解是机器换人,实现高度自动化。我们讲智能制造,实际上是在讨论,如何解决当下企业痛点问题,轻松获取数据,将数据串联,打破信息孤岛,实现业务的融合,从而提高生产力,平衡生产力和生产

对智能制造最大的误解是机器换人,实现高度自动化。我们讲智能制造,实际上是在讨论,如何解决当下企业痛点问题,轻松获取数据,将数据串联,打破信息孤岛,实现业务的融合,从而提高生产力,平衡生产力和生产关系。

智能制造系统之殇

企业信息化建设是三驾马车并驾齐驱:ERP、PDM与MES。ERP管理企业资源,如人员、设备折旧等,从客户开始,到订单,到主计划,回答为什么生产;PDM管理产品设计过程,如产品图纸、工艺等,PDM从产品需求开始到工艺编写,回答怎么生产;MES管理制造的过程,如生产计划、生产作业等,从计划到具体加工,回答到底是怎么干的。

综合来看,ERP、MES与PDM都属于管理系统,MES(ManufacturingExecution System)全称是制造执行系统,主要面向的对象是管理层。

战略层:战略层如企业总经理、型号总师等,主要获知生产的趋势性数据,如生产问题发生率、任务完成率、额定工时统计等等,都属于分析统计类数据,简称高阶数据;

管理层:管理层如计划员、调度员等,主要获知生产的实时数据,如生产进度、现场问题等,属于实时性数据,对数据的实时性要求较高;

执行层:执行层如班组长、现场工人,主要获知的是相对静止的信息,如产品的操作手册、加工工艺或者临时工艺通知等内容。

综上执行层虽然处于数据采集最核心的位置,但对于他们工作KPI(工时/件数)等均没有增益,甚至会影响产量。

MES大部分功能面向管理层,但是MES的应用主要靠执行层表现。

执行层的数据来源于机器采集、手工录入、上游系统传递、硬件集成等等,其中主要的数据还是来源于手工录入,所以在上线MES系统后,执行层需要学习MES系统的操作。

由于管理层希望看到更多来自于执行层的数据信息,以辅助工厂的决策。执行层的工人们开始罔顾生产,去大量的在系统中录入数据,这种本末倒置的行为,导致两种结果:

1.系统培训浪费时间,造成本职工作未按时完成;

2.没有减少工作量,反而因为要录入数据降低了效率;

在这样的现状下,MES的应用效果大打折扣。造成了一个智能制造之殇:管理层需要更多更全面的数据,执行层希望更具备效率更简单舒适的工作工具。如何轻松简洁的获取数据,再将数据串联起来,打破信息孤岛,实现业务融合是目前智能制造的重中之重。

智能制造的解救之钥

事实上,在我国工厂的很多车间里,各个生产设备之间、生产设备和控制器之间,都已经基本实现了信息化的连通。再厉害一点的公司,整个工厂已经通过制造执行系统(MES)连通起来,而业务部门全部通过ERP连通起来了。

这样的情况下,问题出在哪里呢?

ERP和MES其实并没有连起来!

这之间存在信息孤岛。所以当ERP给MES下达生产计划指令后,如果MES在生产过程中发生与计划偏差的事项(比如设备坏了,原料不合格等等),MES会根据车间的实际情况进行调整。但是ERP不知道,它会继续按照原本的计划执行订单,时间久了,财务系统和工厂的实际情况就会出现非常大的偏差。

没有连起来的原因也很简单:

1、ERP和MES的开发公司通常是两拨人,搞财务的和搞生产的合作,不但互相不懂对方的职业术语,鸡同鸭讲,而且互相看不上对方。

2、公司内部的业务部门和生产部门通常是分开运营,在没有实时沟通的情况下,各自是不知道对方的调整的。

当然,ERP和MES的问题只是工厂内系统断层的一个问题缩影,事实上工厂里还有非常多的其他系统,设计、制造、采购等,这些系统都是一个个信息孤岛,互相都不知道对方的行动和接下来的计划。这个问题自工业革命以来就存在,但是工业时代,产品的生产周期很长,所以问题在生产研发的过程中能够得到调整。

但是互联网和智能时代的到来,带来了新的变化。

互联网和智能让经济得以高速发展,与此同时,产能过剩严重成了全球性的问题。企业的竞争越来越激烈,我们的产品更新换代越来越快,以往一款产品卖十年二十年,现在我们看到的是,每隔几个月,就会有多个产品的更新迭代。

另外,互联网帮我们消除了信息的不对称。过去的大批量统一生产的做法显然已经行不通。随着消费升级,消费者更青睐于个性化的产品。这就要求工业企业能够实现小批量、定制化的快速生产。

如果这个时代延续过去的做法,显然很快就会被淘汰,因此,企业最迫切需要做的就是连接ERP和MES,打破业务和生产之间的信息孤岛,进入完全的自动化和信息化阶段,也就是工业3.0大圆满阶段。 这个阶段的单点功能不需要太完美,在下一个阶段,中国人自己的智能制造阶段,需要解决的就是单点数据。

智能制造的AI之路

数据采集:

采集数据是根本的,但是需要在不增加工作量的基础上,因为人为的采集数据就不可取。AI的到来,为我们提供了可能,我们现在看到的人脸识别、智能语音等等,都体现了AI这一强大的实力。

所以工业的AI之旅注定达到的目的是:最大限度的获取非隐私数据,极多数的单点工具,让工人只做本职工作的事情,不再因为管理需求而做一些无用功。

数据处理:

AI为我们采集到过多的数据,但是这些数据中必然存在大量的无用冗杂数据,如果不进行择优清洗,后续的工作会很难进行,基于AI的大数据处理应用而生,帮助我们实现数据的转化和存储

数据分析:

当世界多变,我们就不能只是单纯的从一个点出发去做判断和决策。由于大量的多面的数据存在,会要求更多的算法去处理数据,挖掘更多的深层的多维信息,把这些数据转化成自己的智慧,做出最理智最正确的判断和决策,从而创造在这个领域的财富,才是智能制造要实现的最终目标。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭