当前位置:首页 > 公众号精选 > 安森美
[导读]点击上方蓝字关注我们周六锁定“温温故,知知新”,获取我司技术知识速递——您发挥才能,我们提供工具!别忘了参与文末有奖活动哦!本篇文章节选自国际知名电源专家ChristopheBasso所著的《考量运算放大器在Type-2补偿器中的动态响应》。本篇文章是此次系列文章的第一篇,完整文...


点击上方蓝字关注我们





周六锁定“温温故,知知新”,获取我司技术知识速递——您发挥才能,我们提供工具!别忘了参与文末有奖活动哦!

本篇文章节选自国际知名电源专家Christophe Basso所著的《考量运算放大器在Type-2补偿器中的动态响应》。本篇文章是此次系列文章的第一篇,完整文章共五篇,第二篇将于下周六发布,欢迎大家持续关注~



作者简介

Christophe Basso

温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇


安森美半导体法国图卢兹 Technical Fellow


他拥有超过20年的电子电路设计经验,在电力电子转换领域拥有近30项专利,他原创了许多集成电路芯片,其中代表性为 NCP120X 系列,它重新定义了电源低待机功耗设标准。


Christophe Basso出版了多部著作,《开关模式 SPICE 仿真和实用设计》深受广大工程师的欢迎并二次改版,《为线性和开关电源设计控制回路:教程指南》为工程师设计补偿和环路稳定性提供了实用指南,《线性电路传递函数:介绍快速分析技术》以说教的方式,为学生和需要强大的工具以快速分析日常工作中的复杂电子电路的工程师提供对电路分析的不同角度。



温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇

考量运算放大器在Type-2补偿器中的动态响应(第一篇)



补偿器是使控制系统在动态运行中快速稳定的电子滤波器。在绝大多数研究中,补偿器是置于运算放大器(运放)周围的一个有源电路,其特性鉴定为完美。如果这种方法适用于低带宽系统,如今的转换器即使输出电容小,只要交越频率超过100千赫就能确保足够快的瞬态响应以限制输出压降。
在这些应用中,若一个完美运放不行的话,最终会导致严重的增益和相位失真。如果展示开环增益和所选运放的低、高频两个极点如何影响整体动态响应,您就可选择恰当的元件,免除影响交越所需的增益和相位性能表征。文本共有两部分,这第一部分主要介绍开环增益的影响,特意先不谈低频和高频两极点。

01

不同补偿器的类别


补偿器的作用是形成一个给定电路的频率响应,以便一旦闭环,控制系统表现出所需的交越频率fc和适当的相位/增益裕度。补偿器通过在fc的一些中期波段的增益或衰减强行形成0 dB交越点。相位裕度jm由补偿器在fc表现出的相位提升 (phase boost)量调节。增益裕度取决于交越后补偿器调降增益的能力。
补偿器有不同的类型,其在开关转换器中通常称为type 1、type 2和type 3。所有三个型号在原点都有一个极点以提供最大可用准静态增益 (S=0),从而提供一个精确的输出变量。type-1补偿器是个简单的积分电路,完全不提供相位提升。type 2基于type 1,增加了一个极/零对,最多有90°的相位提升,常见于电流模式电源,可提供大量补偿。type-3电路提供另一个极零对,可提升相位达180°。更多信息请查阅[1]。

图1:您选择的补偿器与您想要的相位提升量有关


温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇

Type 1 – 无提升

Type 2 – 提升达90°

Type 3 – 提升达180°


02

简介快速分析技术(FACTs)


快速分析技术 (Fast Analytical Techniques ,简称FACT)的基本原理是确定在两个不同条件下的电路时间常数:激励信号消失 (Vout降至0V)时和响应清零 (VFB=0)时。
一个具有非零准静态增益的第一阶系统的传递函数可表示为:
温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇

(1)


首项G0是S=0时系统表现出的增益。分子的N(s)控制传递函数的零点。在数学上,零点是个特定的点sz,无信号响应。从理论上讲,考虑到激励信号覆盖整个s面 (谐波模式下不仅在垂直轴),当输入信号调到零角频率sz,零点表现为无信号的输出响应。电路中一些特定阻抗组合阻挡了信号传播,响应为0V,尽管存在激励源。零点是分子的根。
分母D(s)由电路自然时间常数构成。通过设置激励信号为0和确定这种结构中所考虑的电容或电感“所示”的阻抗而得出这些时间常数t= RC或t= L/R。如您想象把欧姆表置于暂时移除的电容或电感器,并读取它显示的电阻。您看图2的无源电路,可看到一个注入源 (换言之,一个激励源)正加偏压于左边网络。输入信号通过网格和节点传输,形成您看到的电阻R3上的响应。

图2:确定电路的时间常数需要将激励源设为0,并看看从电路中暂时移除的能量存储元件所提供的电阻。


温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇

The response:响应

The excitation:激励源


本例我们将激励源设为0 (由短路代替0V电压源,开路代替0A电流源),拆下电容器。然后我们想象连接一个欧姆表,以确定由电容器端提供的电阻 (如图3)

图3:由短路代替0V源后确定电容器端的电阻。


温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇

The excitation is set to 0:激励源设为0

For example:例如


您“想象” R1与R2并联后与R4串联,所有这些与R3并联后与rC串联。该电路的时间常数只通过R和C1即可计算得出:
温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇

(2)


我们可证明,第一阶系统的极点是其时间常数的倒数。因此:
温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇

(3)


s = 0时这个电路的准静态增益是多少?在直流条件下,电感器短路,电容器开路。把这概念应用于图2的电路,绘制成如图4所示。想象在R4前断开连接,会看到一个含R1和R2的电阻分压器。R2上的戴维宁 (Thévenin)电压为:
温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇

(4)


输出电阻Rth是R1与R2并联的值。因此完整的传递函数涉及到电阻分压器 (由与Rth串联的R4和加载的R3所构成)。rC是断开的,由于电容C1在这直流分析中被移除。因此:
温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇

(5)


图4:您断开直流电路中的电容器,计算这简单的电阻配置的传递函数。


温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇
我们如何知道是否有零点?技巧是:您想象图2的电路,使电容C1短路。现在假设您为具有短路电容器的电路提供激励信号。您能够基于示波器观察Vout的响应吗?当然rC使R3短路,尽管振幅可能低,输入信号仍会传输并有响应。若“尽管C1短路但仍有响应”,那么有与C1有关的零点。处理含电感L1的电路亦然 (但采用电感开路)
零点通过阻断激励信号的传输而在电路中表现出来,输出响应为0。若我们考虑一个变形电路–其中C1由代替–如图5,当激励源加偏压于电路,有什么特定的条件意味着无信号响应?无信号响应只意味流过R3的电流为0。若电阻没有电流,没有电压施加和Vout是0 V,这不是短路,而是虚拟的接地。

图5:在这变形电路中,当串联的rC和C1转化为短路,响应消失。


温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇
若R3没有电流,那么串联的rC和转化为短路:
温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇

(6)


根sz是我们想要的零点位置:
温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇

(7)


从而有:
温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇

(8)


现在,我们可组合所有这些结果,形成以图2电路为特征的最终的传递函数:
温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇

(9)


这就是所谓的低熵表达式,您可立即识别增益、极点和零点。高熵表达式将在考虑阻抗分压器时通过施加大规模外力到原来的电路来获得,如:
温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇

(10)


请注意(9)没有一行代数。这易于发现错误时单独修复。(9)的校正很容易。现尝试对(10)进行相同的修正,无需从头开始。您比对一下,采用Mathcad®表绘制的表达式(9)和(10)的频率响应相同(图6)。

图6:快速Mathcad®显示用FACT推导出的表达式是否与由原表达式返回的响应相匹配。


温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇
未完待续,下周六见…


参考文献

1、C. Basso, “ Designing      Control Loops for Linear and Switching Converters – A Tutorial Guide”,      Artech House 2012, ISBN 978-1-60807-557-7


2、C. Basso, “Linear      Circuit Transfer Functions – An Introduction to Fast Analytical Techniques”,      Wiley 2016, ISBN 978-1-119-23637-5


3、V. Vorpérian, “Fast      Analytical Techniques for Electrical and Electronic Circuits”, Cambridge University Press 2002, ISBN      978-0-521-624428


4、C. Basso, “Fast      Analytical Techniques at Work with Small-Signal Modeling”, APEC      Professional Seminar, Long Beach (CA), 2016, http://cbasso.pagesperso-orange.fr/Spice.htm





0

1

参与阅读有奖活动

如果粉丝朋友们喜欢我司的技术文章,欢迎大家分享。参与本次阅读有奖活动,仅需点击阅读原文正确填写问卷,即可获得抽奖资格哦。


0

2

活动流程

我们将从参与活动的粉丝中,随机抽取8位,赠送8G四合一手机U盘。欢迎大家热情参与!

活动时间:5月16日至6月15日


本次的阅读有奖活动,将在6月19日公布获奖名单。


0

3

活动规则

活动期间,每个ID只有一次参加机会

奖品内容以最后收到的包裹为准

请如实填写信息,信息将用于寄送奖品

奖品将由快递寄送给获奖者


*本次活动由Archetype举办,最终解释权归Archetype所有 活动参与者将被默认为该参与者同意所提供的信息将根据安森美半导体隐私政策条款使用 安森美半导体及Archetype的员工、代理商/承包商/分包商的员工均没有参与此活动的资格

温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇 温温故,知知新 | 考量运算放大器在Type-2补偿器中的动态响应 第一篇 点击阅读原文,参与活动

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭