语音识别技术基本成型,但发展过程中仍遭遇瓶颈
扫描二维码
随时随地手机看文章
(文章来源:最极客)
目前,语音识别技术基本成型,处于较为成熟的状态。例如在语音识别的Switchboard任务方面,最新的IBM已经能将错误率控制在5.5%之下,有经验的转写人员在这个任务中可以达到4%之下。因此,这类安静环境下的语音识别系统已经近似于人类水平。
目前的进展多处于应用层面。语音合成技术被应用在更多领域,而且从原始的机器声音已经进化到能够发出自然人的声音的程度,甚至现在出现各种明星声音的语音助手。在语音识别方面,市面上已经出现了针对方言口音的语音软件。在语义理解方面,聊天机器人正处在迅速进化的过程中,甚至能够讲笑话。在语音唤醒方面,智能音箱等产品大量出现。虽然在这些应用中,许多产品并没有达到高层智能的水平,但也给语音识别技术指明了方向。
实际上,语音识别技术在发音规范且背景噪音可控的环境下,在很多年前就能够进入应用阶段。不少尖端系统在工程水平很高的情况下还可以做的更好,如早期的Siri及DARPA项目语音识别评测中的各种参赛系统。但在飞速进步的过程中,语音识别仍无法避免遇到某些瓶颈。
在强噪声干扰的情况下,目前的语音识别系统还很难达到实用化要求。在自然发音、噪声、口音等复杂条件下,语音识别的准确率明显下降。此外,语音的训练和测试用数据的匹配也并不十分契合。想要解决环境复杂的问题,除了高超的技术之外,声学模型自适应等也是不错的方式。对于匹配问题则可以更加偏向研究方向,对语音本质进行更为深入的理解。
例如在人类的听觉系统中,存在一种“鸡尾酒会效应”:人类在具有背景噪声干扰的情况下,依然能够将注意力集中在某一个人的谈话上。可以将人类听觉系统的这种功能赋予语音识别系统,但就目前的技术而言依然很难实现。同时,远场识别也依然是个充满挑战性的问题。当前,语音识别的远场错误率是近场的两倍左右。因此,解决远场及强噪声干扰情况下的语音识别是当前的一个有待进一步研究的问题。
对于这个问题,目前的主要解决方法是语音识别和麦克风阵列相结合。通过阵列信号处理技术,增强多通道语音技术,而后利用深度学习的方法进行声学建模。当然,这种方案有待于进步和优化,并且要考虑多方面的问题。如怎样将阵列信号处理技术和深度学习方法相结合,利用阵列信号处理的相关知识指导深度神经网络的结构设计,以便直接从多通道语音信号中学习多通道语音增强方法,而后和后端声学模型联合优化等。
另外,个体发音以及用词习惯都存在差异性,所以如何使得语音识别更加智能化也是一个问题。可以看到,语音识别已经走到一个相对成熟的发展阶段,未来也会在应用级市场普及,但在发展过程中仍然存在许多瓶颈。生物技术识别方式先进而便捷,但人们不免担心其中所涉及到的隐私问题。
当然,目前语音识别技术并未大规模普及,但在那一天到来之前,人们需要弥补语音识别技术中存在的瓶颈。其实对于深度学习神经网络而言,一切都只是时间问题。足够的语音数据加上足够的训练,语音识别技术的发展还是值得期待的。