当前位置:首页 > 智能硬件 > 机器人
[导读] (文章来源:环球网) 人工智能(AI)研究组织OpenAI在制造具有通用性、能够自我学习的机器人方面取得了新的里程碑。该组织的机器人部门表示,其去年首次亮相的机器人手Dactyl已经学会

(文章来源:环球网)

人工智能(AI)研究组织OpenAI在制造具有通用性、能够自我学习的机器人方面取得了新的里程碑。该组织的机器人部门表示,其去年首次亮相的机器人手Dactyl已经学会了单手解魔方。OpenAI将这个壮举视为一次飞跃,这既体现在机器人手的灵巧性上,也体现在其自主研发的AI软件上。这种软件允许Dactyl在面临真正的物理挑战之前,利用虚拟模拟来学习如何执行新任务。

在展示Dactyl新才艺的演示视频中,我们可以看到机器人手以摸索的方式逐渐破解魔方,虽然其动作显得有点儿笨拙,但却十分精确。尽管破解的过程有点儿长,但Dactyl最终解决了这个难题。这个机器人手的动作看起来明显不如真正的人手灵活,甚至有点儿脱节,更无法与那些能在短短几秒钟内破解魔方的人的惊人速度和敏捷相比。

但对于OpenAI而言,Dactyl的成就使其向更广泛的AI和机器人行业令人向往的目标又迈进了一步。这个行业希望研发出能够学习执行各种现实世界任务的机器人,它们无需培训数月乃至数年时间,也无需专门进行编程。

韦林德指的是过去几年中出现的各种机器人,这些机器人已经将破解魔方的方法推向远远超越人类双手和思维的极限。2016年,半导体制造商英飞凌(Infineon)开发了一款专门用于以超快速度破解魔方的机器人,该机器人成功地在一秒钟内完成了这个任务。这打破了当时由人类保持的世界纪录(不到5秒)。两年后,麻省理工学院开发的一台机器在不到0.4秒的时间破解了魔方。

换句话说,为某一特定任务而设计的机器人,并被编程为尽可能高效地执行该任务,通常最适合人类,而破解魔方是软件很久以前就掌握的东西。因此,开发机器人来破解魔方,即使是与人手相似的机器人,本身也并不是那么引人注目。Dactyl操作的速度十分缓慢,这让其取得的成就更显得不起眼儿。

但是OpenAI的Dactyl机器人和驱动它的软件,在设计和用途上与专用的魔防破解及其有很大的不同。正如韦林德所说的那样,OpenAI正在进行的机器人研发工作并不是为了在狭隘任务中获得卓越的结果,因为这只需要你开发更好的机器人并相应地对它进行编程就可做到。这甚至可以在没有现代AI支持的情况下完成。

但直到最近,训练AI代理做些虚拟的事情(例如玩电脑游戏)比训练它执行现实世界任务要容易得多。这是因为,研究人员可以加快训练软件在虚拟世界中做某些事情的速度,这样AI就可以在现实世界的短短几个月时间内接受相当于数万年的训练,这得益于数千个高端CPU和超强大GPU并行工作的结果。

用物理机器人进行同样水平的训练并执行物理任务是不可行的。这就是为何OpenAI试图用模拟环境代替现实世界来开创机器人训练新方法的理由,这也是机器人行业几乎没有尝试过的东西。在这种情况下,该软件可以同时在许多不同的计算机上以加速方式进行广泛的练习,并希望它在开始控制真正的机器人时保留这些知识。

由于训练的局限性和存在明显的安全问题,今天商业中使用的机器人不使用AI,而是用非常具体的指令进行编程。韦林德解释称:“过去的方法是,你需要使用非常专业的算法来解决特定任务,你可以对机器人模型和环境进行精确操控。对于工厂机器人来说,你有非常精确的模型,而且你也确切地知道自己所处的工作环境,因此你非常了解它将如何执行特定的任务。”

这也是为何当前机器人远没有人类那么多才多艺的最重要原因。人们需要大量的时间、精力和金钱来重新给特定的机器人编程,比如组装汽车特定部件或计算机组件的机器人。没有经过适当训练的机器人,即使是在执行人类看起来非常简单的任务,它都会经历惨败。然而,有了现代AI技术,机器人可以模仿人类,这样它们就可以使用对世界同样直观的理解来做从开门到煎蛋等各种事情。至少,这是我们的梦想。

我们距离机器人能够执行这种复杂程度的任务仍然有几十年的距离,AI社区在软件方面所取得的飞跃,比如自动驾驶汽车、机器翻译和图像识别,还没有完全转化为下一代机器人身上。目前,OpenAI只是试图模仿人体某一部位的复杂性,并让机器人的模拟操作变得更自然。

这就是为何Dactyl会被模仿人手设计成拥有24个关节机械手的原因,它与我们在工厂里看到的机械爪或机械钳完全不同。对于支持Dactyl学习如何以人类的方式利用所有这些关节的软件,OpenAI尝试在现实世界中破解魔方之前,已经在模拟环境中对其进行了数千年的训练。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭