智能时代下智能医疗产业该何去何从
扫描二维码
随时随地手机看文章
(文章来源:猎云网)
诸如“AI医生”、“AI诊断”以及“人工智能将最终成为人类的医生”之类的头条新闻或多或少使人们相信,人工智能不久后将真正取代人类医生,但专家表示,事实上AI与人类医生将形成一种合作关系,并非完全取代:患者很快就会发现,临床医生将与人工智能携手,共同为他们提供服务。
在医学界,人工智能的前景毫不悲观。但许多人表示,针对AI的炒作尚未在真实的临床环境中得以实现。对于人工智能服务将如何产生巨大影响,各界人士的看法褒贬不一。目前,尚不清楚人工智能能否改善患者的生活,对于硅谷企业、医疗保健组织和保险公司等期望达到的最低目标也不得而知。
Human Diagnosis Project(Human Dx)的创始人兼主席Jayanth Komarneni表示:“AI就像技术一样,既可以填补差异,也可能会加剧差异,而在加剧差异的能力方面,没有任何事物能与AI媲美。”Human Dx是一家专注于众包专业医疗的公益机构。
当前,最热门的AI技术是机器学习和深度学习。与严格遵循人类编写规则的计算机程序不同,机器学习和深度学习算法都可以通过查看数据集进行学习,并做出新预测。最值得一提的是深度学习,这一技术还可以通过发现人们潜在错漏的数据模式来做出有价值的预测。
但是,仅仅依靠AI,还不足以充分发挥这些预测在医疗保健方面的作用。然而,人类仍然必须做出可能对健康和资金产生巨大影响甚至后果的决策。由于AI系统缺乏人类的一般智力,系统的预测或许模棱两可、令人困惑。如果医生和医院毫不保留地相信AI,可能会酿成大祸。深度学习预测在首次遇到异常的数据点(例如特殊的医疗病例),或者在学习无法良好普遍适用的特定数据集中时,也会出现谬误。
在应用于海量数据集时,AI预测的表现最佳。例如,由于可以访问大量人群和患者数据,中国在训练AI系统方面具有优势。2月,《Nature Medicine》杂志发表了一项由中国广州和圣地亚哥研究人员展开的研究。该研究基于超过56.7万名儿童的电子健康记录,可以诊断出许多常见的儿童疾病。
在其他情况下,这种预测仍然很难实现。例如,多伦多大学计算机科学家和生物医学工程师Marzyeh Ghassemi表示:“在一家城市医院,例如贝以迪医院,有4万名ICU患者。我们可以根据所有的患者资料做出预测。这些预测结果也许适用于波士顿的另一家医院。但对另一个州或者另一个国家的医院是否适用呢?我们无法给出肯定的答案。”
虽然AI模型可能并不通用,但Ghassemi认为该技术仍值得探索。“我非常赞成将这些模型从实验室带向临床,但是必须采取非常积极的预防措施。”Ghassemi还提议AI算法需经常审核,从而确保不同种族、性别、年龄和健康保险的公平性和准确性。由于AI在其他领域的应用已经证明了它的误差率,因此这一点将非常重要。
在确保完成上述所有步骤之后,提供AI服务的人员和公司将解决某些不可避免的法律问题。与多数通常只需一个监管机构批准的医疗设备不同,AI服务或许每进行一次新数据学习,都要进行额外的审核。
一些监管机构也正在重新考虑评估AI医疗保健的方式。4月,美国食品和药物管理局(FDA)向公众发布了一份文件,征求关于如何更新相关监管审查的公众反馈意见。“一直以来,我们不懈努力的目标是让技术惠及群众,但我们也意识到目前的方法效果欠佳,”FDA数字健康总监Bakul Patel表示。“这就是我们需要纵观整个产品生命周期整体方法的原因。”
除了关于授权、隐私和法规的问题,谁将最大程度地从AI医疗服务中受益仍不可知。医疗保健的差异也已经存在:根据世界银行和世界卫生组织的统计,全球一半的人口无法获得基本医疗服务,近1亿人口因医疗费用而陷入极度贫困。依靠AI的部署方式,这些不平等或许可以得到改善,也可能使情况更糟。
这一切将如何发展取决于部署AI的不同愿景。早期AI开发的切入点是非常小的医疗诊断应用,例如检查皮肤癌或指甲真菌的图像或读取胸部X光片。但近期的研究的重点已经转向更快速地诊断多种健康疾病。