当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 人工智能?机器学习?深度学习?安全界用辞令人困惑,了解主要用语真正的意义,方可在信息安全的世界中游走自如。 在热情的市场营销人员口中,“人工智能”、“机器学习” 和 “深度学习” 的定义

人工智能?机器学习深度学习?安全界用辞令人困惑,了解主要用语真正的意义,方可在信息安全的世界中游走自如。

在热情的市场营销人员口中,“人工智能”、“机器学习” 和 “深度学习” 的定义变得模糊,明确性让位于增加销量的需要。客户完全有可能遇到贴着多个此类标签,却几乎不具备这些特性的产品或服务。

机器智能的话题常会落入其独特的术语和专业概念无底洞。这些术语将构成未来安全基础设施中的重要部分,其间区别真的重要吗?

三个分支

总的说来,机器 “智能” 就是一套系统,摄入数据,产出结果,并且随着数据摄入量的增加而不断变得更好、更快。整个机器 “智能” 大类下有三个标签常被贴到系统上:机器学习、深度学习和人工智能。每一种都有其独有的数据处理方式和结果呈现方式。

这三种方式在运行机制上的差异使得它们分别适用于不同的任务。而其间最为突出的差别存在于人工智能 (AI) 和其他两种之间。简单讲,AI 的结果能令你震惊,而其他两种则“只”能让你惊异于其速度和准确性。

机器学习

机器学习采用静态模型(营销人员口中的 “启发式方法”)而非僵化的算法编程来获得结果。从稍微不同的角度观察,机器学习可以运用大量输入来获得特定的结果集。

市面上很多技术都可以归到机器学习上来。比如监督和非监督式学习、异常检测,以及关联规则。以上几种技术中,机器学习都可以从中输入新的学习样本,让其作为动作依据的算法模型更加丰富、全面、准确。

所以,关键就在于 “特定结果集”。比如说,如果你想让机器学习系统分辨猫和狗,你可以教它各种用于定义猫和狗的参数。越多数据用于构建模型,该系统就越能准确区分猫和狗,最终能够基于耳朵或尾巴分辨目标对象是猫还是狗。但即使你拿出的是一只鹅,该系统也会告诉你是一条狗还是一只猫,因为判断结果就只有这两种选择。

如果目标是分类多种输入,或者指示要采取的特定动作以完成自动化过程,那么机器学习就是非常合适的一种技术。

深度学习

深度学习归属机器学习范畴,但是其中尤为特别的一类。“深度学习” 表明神经网络属于处理技术大家族。尽管神经网络面世已久,但最近十年的发展才令该技术更贴近应用开发人员。

如今的神经网络基本上采用层次化技术在多个处理层间传递输入。这是神经网络模拟动物智能的一种方式。这种拟态使深度学习适用于为数不少的一系列应用。

安全之外的语音识别和图像识别应用就常建立在深度学习技术之上。而在安全领域,深度学习常见于恶意软件检测和威胁检测系统。因为神经网络节点间的连接数量(从几百个到数百万个不等),学习和处理主要发生在中央云系统,而学习结果应用在网络边界的那类应用,常会用到深度学习技术。

沿用前文中举的猫狗分辨例子,深度学习也能够学习如何分辨猫和狗,经训练后能判断狗和猫的品系,甚至能达到根据外貌特征给杂种狗指派可能品系的程度。但,深度学习仍然只局限在分辨猫狗上,可怜的大鹅依然不存在于深度学习的结果集中。

人工智能

机器学习和深度学习系统都是不断摄入大量数据,返回特定参数集范围内的结果。所以,这两种技术便于集成到自动化系统中。人工智能则不然,其得出的结论可能超出定义的参数。人工智能拿出的结果会令你惊讶。

若咨询学术界 AI 研究员,他们会说市面上的 AI 都不“真” AI。他们的意思其实是当前不存在通用 AI ——《太空漫游 2001》里 HAL 9000 那种人工智能电脑。

但是,可针对特定问题应用先进智能的 AI 系统是存在的。IBM 的 Watson 就是其中最为知名的,但还有其他很多特定于应用的 AI 引擎为各供应商所用。“深度伪造” (deep fake) 音视频引发的广泛担忧,也是不同应用和服务中所用 AI 功能催生的。机器人,包括自动驾驶汽车,则是另一个例子。

AI 系统应能纳入深度学习中建立的所有模型信息并加以延伸。再给多一点信息,AI 系统还可能分辨新图像是哺乳动物还是其他种类的动物,即便呈现在眼前的是消防栓的图片,AI 系统也能告诉人类操作员这是从未见过的新 “动物”,需要更多学习。AI 的结果可能跳出给定的结果集。

网络安全领域里,分析师用 AI 帮助筛选和分类每天涌入安全运营中心 (SOC) 的大量输入数据。需要指出的是,现今非预期结果出现的可能性意味着,AI 是用来辅助或增强人类分析师的,不仅仅用于驱动安全自动化。

天网预备役

面对以上几种机器智能,操作人员必须警惕两大问题,其中一个问题由内部力量驱动,另一个问题则受外因推动。内部问题是所谓的 “模型偏好”——系统模型中用于学习的数据会使模型偏向特定分析方向,而不是由系统自然得出数理上正确的答案。

外部问题则源自 “模型中毒”,也就是有外部因素确保模型得出不正确的结果。取决于应用,中毒可导致令人尴尬或灾难性的结果,IT 或安全人员必须警惕这种可能性。

来源:安全牛

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭