当前位置:首页 > 智能硬件 > 人工智能AI
[导读] (文章来源:千家网)        人工智能正在进入更多的行业,越来越多的公司已经体验到了实施人工智能的好处。尽管人工智能正在发展并越来越受欢迎,但许多企业仍然无法采用这种新技术改进业务。这

(文章来源:千家网)
       人工智能正在进入更多的行业,越来越多的公司已经体验到了实施人工智能的好处。尽管人工智能正在发展并越来越受欢迎,但许多企业仍然无法采用这种新技术改进业务。这是为什么?企业可能担心人工智能实施的原因有很多。在2019年,O‘Reilly公司出版了一本电子书,总结了对企业采用人工智能的调查结果,并列出了阻碍进一步实施人工智能的一些最常见因素。

正如人们所见,一些常见问题主要包括与人员、数据或业务一致性相关的问题。虽然每家公司都不同,并且也会以不同的方式体验人工智能的采用过程,但也应该注意一些障碍。在本文中,将介绍人工智能实现中最常见的一些挑战,并尝试建议如何做好应对这些挑战的准备。

与数据相关的问题可能是大多数企业所面临的问题。众所周知,企业构建的系统只能与它给出的数据一样好。由于数据是人工智能解决方案的关键要素,因此在此过程中可能会出现许多问题。如上所述,人工智能系统的质量在很大程度上依赖于输入的数据。人工智能系统需要大量的训练数据集,以类似于人类的方式从可用信息中学习,但为了识别模式,它需要更多的数据。

在任务上做得更好,执行任务的经验越多,这是有道理的。不同的是,人工智能能够以人类想像不到的速度分析数据,因此其学习速度很快。企业给它的数据越好,它将提供更好的结果。那么企业怎么解决数据问题?首先,需要知道已有的数据,并将其与模型所需的数据进行比较。为此,企业需要知道其将要使用的模型,否则,将无法指定所需的数据。

在这种情况下,综合数据得以拯救。综合数据是基于实际数据或从头开始人工创建的。当没有足够的数据可用于训练模型时,可以使用它。获取数据的另一种方法是使用开放数据作为数据集的补充,或使用谷歌数据集搜索获取数据来训练模型。企业还可以使用RPA机器人来抓取公开可用的数据,例如维基百科网站上发布的信息。

当企业知道自己拥有哪些数据以及需要哪些数据时,将能够验证扩展数据集的哪种方式最适合自己。几年前,大多数数据都是结构化的或文本的格式。如今,随着物联网(IoT)的发展,大部分数据都是由图像和视频组成的。这没有什么不对,但问题是许多利用机器学习深度学习的系统都是以监督的方式进行训练,所以他们需要对数据进行标记

事实上,人们每天产生大量数据的事实,已经达到了没有足够人员来标记正在创建的所有数据的程度。有些数据库提供标记数据,包括ImageNet,这是一个拥有1400多万张图像的数据库。所有这些都是由ImageNet人工注释的。尽管在某些情况下其他地方可以获得更合适的数据,但许多计算机视觉专家仍然只使用ImageNet,因为他们的图像数据已被标记。

企业可以采用一些数据标注方法。可以在企业内部或外包工作,也可以使用合成标签或数据编程。所有这些方法各有利弊。对于许多“黑盒”模型,企业最终得出一个结论,例如预测但没有解释。如果人工智能系统提供的结论与企业已经知道的结果重叠并认为是正确的,那么就不会质疑它。但是如果不认同会发生什么?需要知道如何做出决定。在许多情况下,其决定本身是不够的。医生不能完全依赖系统提供的关于患者健康的建议。

LIME等方法旨在提高模型的透明度。因此,如果人工智能判断患者患有流感,它还会显示导致此决定的数据:打喷嚏和头痛,而没有考虑患者的年龄或体重。当企业获得决策背后的理由时,更容易评估人们可以信任模型的程度。人们能够利用从一个领域到另一个领域的经验。这就是所谓的学习转移,人类可以在一个环境中转移学习到另一个类似的环境中。人工智能却难以将其经验从一种情况转移到另一种情况。

一方面,人们知道人工智能是专业的,它意味着执行严格指定的任务。它的目的只是回答一个问题,为什么人们还希望它能回答另一个不同的问题呢?

另一方面,人工智能在一项任务中获得的“经验”对另一项相关任务可能是有价值的。有没有可能利用这种经验而不是从头开始开发新的模型?转移学习是一种使之成为可能的方法——人工智能模型被训练来执行某项任务,然后将该学习应用到类似(但不同)的活动中。这意味着为任务A开发的模型稍后将用作任务B的模型的起点。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭