人工智能与大数据和云计算三者有什么关系
扫描二维码
随时随地手机看文章
人工智能(Artificial Intelligence,AI)、大数据(Big Data)和云计算(Cloud Computing)是当前最受关注的技术,业内常常取这三个技术英文名的首字母将其合称为ABC。最近10年,资本和媒体对这三种技术的热度按时间排序依次为:云计算、大数据和人工智能。事实上,若按照技术出现的时间排序,结果正好相反,人工智能出现最早,大数据其次,云计算则出现得最晚。
由于每种技术都能应用于各个领域,因此人们可以从不同的角度分别解读每种技术。作为同时在研发和使用这三种技术的机构负责人,作者将尝试从大数据的角度解释ABC的关系,并且阐述这三种技术对于企业、机构和人类社会的重要性。
人工智能是计算机科学的一个分支,它的主要研究目标是用计算机程序来表示人类智能。这个词最早是在1956年的达特茅斯会议上正式提出的。在达特茅斯会议正式提出“人工智能”这个概念之前,图灵和早期的计算机科学家一般用“机器智能”这个词。
需要强调的是,人工智能是建立在计算机之上。人工智能教育的主要目的是学习建立在模型之上的算法。这些算法和其他计算机领域的算法并无太大区别,只是这类算法专注在如图1-3所示的智能主体(Intelligent Agent)里面的模型。在人工智能领域,计算机科学家们试图建立模型使得智能主体能够观察周围环境并做出行动,就像人类的行为那样。
最近5年,由于智能主体模型在无人驾驶、聊天机器人和计算机视觉识别等应用的准确率的提升,人工智能的应用热度也随之提升。AlphaGo等棋类对弈让人工智能被公众津津乐道,因为计算资源和计算能力的提升,在限定时间内,对弈模型比人类棋手更具优势,这也引发了很多关于人工智能的讨论。自远古时代,人类一直希望能够创造一种类似于人类智能的机器,将人类从乏味的重复劳动中解放出来。
在那个时代,人工智能的概念还没有提出,人们更多地使用“机器智能”这个词来讨论计算机带来的智能。简单地说,图灵的论文证明了机器可以模仿人类智能,所以今天的无人驾驶、聊天机器人、棋类对弈和计算机视觉识别等应用都是图灵预见的,虽然他那时并没有足够的硬件条件测试这些应用。
在图灵提出图灵机后,多个机构便开始设计真正意义上的遵循通用图灵机模型架构的存储程序计算机(Stored-program Computer)。虽然第一台存储程序计算机(后文称作现代计算机)是谁先发明的至今仍有争议,但是影响较大的是冯·诺依曼提出的EDVAC(Electronic Discrete Variable AutomaTIc Computer)。冯·诺依曼在后来也确认现代计算机的核心设计思想是受到通用图灵机的启发。
现代计算机发明以后,各种应用如雨后春笋一样蓬勃发展,但是真正把人工智能作为一个应用方向提出来还是在1956年的达特茅斯会议。在20世纪40年代末现代计算机被发明后,从20世纪50年代开始,各个领域都开始关于“思考机器”(Thinking Machines)的讨论。各个领域的用词和方法的不同带来了很多混淆。于是,达特茅斯学院(Dartmouth College)年轻的助理教授麦卡锡(John McCarthy)决定召集一个会议澄清思考机器这个话题。
召集这样的会议需要赞助,聪明的麦卡锡找到了他在IBM公司的朋友罗切斯特(Nathaniel Rochester)和在普林斯顿大学的朋友闵斯基(Marvin Minsky)以及大师香农一起在1955年写了一份项目倡议。在倡议中,他使用了人工智能(ArTIficial Intelligence)这个词,避免和已经有的“思考机器”一词混淆。这里值得一提的是闵斯基,麦卡锡和闵斯基后来在麻省理工学院领导了AI实验室,成就了麻省理工学院在人工智能领域首屈一指的地位。
前面已经解释了ABC的概念,这里我们来讨论一下ABC之间的重要内在关系以及这些内在关系带来的可以赋能于商业的巨大技术产能。从技术角度上看,ABC之间有以下两层重要关系:这一结论为机器学习和人工智能的问题求解指出了一个新方向:用大量数据和大数据计算来提高人工智能。对比一下自然语言翻译在最近10年因为利用大数据和计算所带来的进展,读者就能感觉到这种力量。
计算资源的丰富使得大数据技术能够以更低的门槛被使用。云计算平民化了大数据技术,使得大数据技术被企业广泛采用,企业也利用大数据养成了保管数据的习惯,把数据当作未被开采的资源。大数据的普及给人工智能的分支——机器学习带来了意想不到的惊喜。
前面讨论的ABC的关系可以总结成图1-7。云计算从量变到质变带来前所未有和平民化的计算资源。企业和互联网在数字化应用方面产生了大量的数据。这些数据和计算能力使得大数据技术普及到普通机构,而这些机构利用大数据来创建和改善现有的机器学习模型,带来更好的人工智能成效。
AI带来的社会影响可能超过前三次技术革命。随着科技和商业不断推动AI技术前进,AI和人之间的关系是技术领袖、商业领袖和政策制定者们不得不思考的问题。