人工智能在医疗保健中是如何应用的
扫描二维码
随时随地手机看文章
大多数诊断依赖于病理结果,因此病理报告的准确性可以区分诊断和误诊。例如,人工智能可以在像素级别了解病理结果,这可以了解癌症的进展。人工智能还帮助医生关注病理图像中最相关的区域。
各种形式的放射学(如CT扫描、核磁共振成像和X射线)为医疗保健服务提供者提供了患者身体的内部视图。然而,不同的放射学专家和医生对这些图像的解读往往不同。人工智能有助于实现更一致的解释。它还帮助放射科医生更好地识别肿瘤的状态或癌症的侵袭性。
医院是智能设备的主要购买者。这些设备采用平板电脑和医院设备的形式,存在于重症监护病房(ICU)、急诊室、手术室和普通病房。人工智能通过监测患者的情况,并提醒医生可能与患者的氧气水平、呼吸模式、心跳、血压或感染(如败血症)有关的重要状态变化。
人工智能在手术室中被用作辅助功能,以缩小不同医生的经验和知识之间的巨大差异。支持人工智能的系统能够快速梳理大量数据,以显示医生需要的信息。
在医疗保健(或任何行业)中采用人工智能的一个常见问题是,启用人工智能系统的设计者和用户倾向于更多地关注潜在的利益,而不是潜在的风险。虽然现在似乎每个人都在谈论人工智能,但很少有人能够很好地理解这个主题。其结果是人们正在构建和采购他们并不完全理解的系统和软件。
目前,人们对人工智能还是知之甚少。算法偏差是一个重要的话题,因为它使人工智能系统的准确性低于人们预期,并可能导致意想不到的结果。
有着偏差的人工智能结果源于算法作者或收集、选择和使用数据的人的故意或无意偏见,其数据本身可能有偏差。鉴于医疗行业使用的大量数据(大数据)以及进行准确数据分析的必要性,了解并纠正偏差非常重要。
医疗保健行业越来越依赖人工智能进行决策。硬编码系统的问题是可能无法解释所有情况。自我学习系统更加灵活;但是,并非所有系统都能够解释其结果或建议,也不是所有系统都能够解释导致结果或建议的因素。系统中也可能存在偏见。因此,人工智能系统可能会做出错误的建议或决定,而医疗保健提供者对此负有责任。
医生通常信奉“首先,不要伤害他人”希波克拉底的誓言,但是人工智能是如何处理的呢?大多数人认为人工智能是不道德的,因为它只是一种工具,而操作者对人工智能的使用将会产生道德或不道德的结果。
然而,由于自我学习的人工智能系统能够感知人类无法感知的事物,并且它们不一定能够解释其推理或结论,因此可能会出现意想不到的结果,其中一些结果可能是不道德的。此外,人工智能目前缺乏同情心和同理心,因此其决策过程与人类不同。
《医疗保险可移植性和责任法案》(HIPAA)对医疗保健信息的使用以及医疗服务提供者使用的信息有严格的规定。由于“坏”数据、算法偏差或无法维护系统的机器学习培训,人工智能可能会出现故障,如果没有得到妥善保护,黑客也可能会破坏这个人工智能系统。