对于人工智能得真正的去了解它
扫描二维码
随时随地手机看文章
根据麦肯锡的数据,从现在到2030年这十几年间,人工智能将会为美国新创造大约13万亿美元的国内生产总值。相比之下,2017年整个美国的国内生产总值约为19万亿美元。吴恩达等主要的人工智能科学家将人工智能描述为第四次工业革命或“新电力”。人工智能无疑是数字转型的核心,它在整个行业的应用将极大地改变世界和业务方式。
弱人工智能是一个非常强大的工具,它将在未来几年为社会增加许多附加价值。近年来看到的所有成就,以及在新闻中经常听到的内容,都发生在弱人工智能领域。这些吸引人眼球的新闻让人们错误地认为科学在人工综合智能方面取得了很大的进展,但实际上只在弱人工智能方面取得了进步。
机器学习是人工智能的中坚技术。它利用统计技术使计算机程序能够从数据中学习(例如逐步提高其处理特定任务中的能力),而无需进行明确的编程。机器学习是人工智能的工具,它引起了所有的过度关注,并使几乎所有通过人工智能系统创造的价值都得以实现。它也可以分为不同的部分,但只有一个部分涵盖80%通过机器学习创造的价值。那便是有监督学习。
有监督学习算法只需通过学习大量数据中的关系来学习输入(A)到输出(B)映射。想象一下建立一个系统,将电子邮件分为垃圾邮件和非垃圾邮件。需要收集大量电子邮件“被贴标签”的案例。这意味着每封电子邮件都有一个标签用来指示它是否是垃圾邮件。人们需要收集数千封带有标签的电子邮件,然后将这些数据输入到一个受监督的机器学习算法中。
在训练过程中,该算法将分析所有输入的电子邮件,并迭代地提高对垃圾邮件与非垃圾邮件间区别原因的理解。在本例中,系统必须将电子邮件(a)映射到一个标签,该标签要能指示邮件是否是垃圾邮件(b)。可以通过输入上千封贴有标签的电子邮件来训练算法。基于该数据进行算法训练后,可以输入一封全新的电子邮件(该算法以前从未见过),该算法将显示它是否认为该电子邮件是垃圾邮件。
比如在线广告,其中输入的是关于用户的信息(A),而系统输出是一个标签,这个标签显示用户是否要单击一个添加项(B)。又比如是语音识别,输入是音频文件(A),输出是音频文件中所述内容文本(B)。再比如输入一个钢板的图像(A)进算法,它会判断是否存在缺陷(B)。乍一看,这似乎是一种相当有限的技术,但如果正确应用,它将非常强大。它是人工智能为社会创造附加价值的唯一主要原因。这种技术似乎有无穷无尽的不同案例,并且人们每天还会发现新的案例。
人工智能是一个非常复杂的领域,许多术语在开始时可能会使人非常混乱。你可能听说过神经网络、深度学习或数据科学。我们将研究一些有关人工智能最重要的术语,并揭示其含义,以便你能够与其他人讨论人工智能,并思考如何在业务中应用人工智能。现在为你提供最常用的人工智能术语的定义,但请注意,人工智能是一个非常晦涩难懂的领域,许多术语可以互换使用,但有时却不可以。
人工智能是计算机科学的一个领域,它强调创造像人类一样工作和反应的智能机器。正如之前所提到的,当人们谈论人工智能时,他们大多是指通用人工智能(AGI)。应该把人工智能视为整个智能领域,把机器学习和深度学习视为使计算机智能化的技术。
机器学习是人工智能的一个分支领域。不过,正是这个研究领域使计算机能够在没有明确编程的情况下从数据中学习。因此,通过机器学习,基本上可以制作程序来执行特定任务。因此,机器学习经常会运行人工智能系统,从基本上来看,这个系统是一个软件。机器学习项目事例:假设一家有许多关于房子的数据的房地产公司,它和一家机器学习公司合作建立一个机器学习系统来预测未来房价。这样的系统可以让人更好地决定投资哪栋房子,并找出合适的时间来清算投资。
深度学习是机器学习的一个组成部分,它包揽了人们近年来看到的,并且今天仍然看到的,所有的媒体炒作和人工狭义智能的大部分突破,这与机器学习基本上是一样的:给算法贴上带有标签的数据,它就会学会预测标签。与机器学习不同的是,深度学习使用了更现代和更复杂的算法,称为神经网络。相反,在机器学习中使用的则是更为简单的传统算法。
由于它们的复杂性,新的技术发现以及足够的数据支持和计算能力,深度学习算法能够打破许多任务的先前基准,甚至在其中一些任务上超过人类(例如:组织病理学图像分析,或者在Netflix上推荐电影)。尽管神经网络(例如深度学习算法)几乎总是比传统算法表现更好,但它们具有某些缺点。
数据科学项目的输出通常是一系列可帮助你做出更好的业务决策的见解,例如决定是否投资某些东西,是否应该购买某些设备,或者是否应重新构建你的网站。可以说,数据科学是通过统计方法、可视化等分析数据来提取数据知识和洞察力的科学。输出通常是演示文稿或幻灯片,它们为高管、领导者和产品团队做出某些决总结结论,以作出某些决策。
你可能还听说过其他流行语,如强化学习、生成对抗网络(GANs)等。这些只是使人工智能系统更智能化的其他工具,换句话说,机器学习有时也是数据科学。现在已经了解了人工智能、机器学习、数据科学和深度学习(例如神经网络)。希望这能让你了解人工智能中最常用的术语,并且可以开始考虑这些事情如何应用到业务当中。