当前位置:首页 > 消费电子 > 触控感测
[导读] 我们每天都在使用触摸屏的电子设备,比如手机、平板电脑。大家知道触摸屏的工作原理是什么吗?它是怎么知道我们手指的位置的?为什么手机贴了膜一样可以使用,而带着手套就不能正常使用了呢?目前,市面上使用

我们每天都在使用触摸屏的电子设备,比如手机、平板电脑。大家知道触摸屏的工作原理是什么吗?它是怎么知道我们手指的位置的?为什么手机贴了膜一样可以使用,而带着手套就不能正常使用了呢?目前,市面上使用的触摸屏多数是电容式触摸屏。为了了解它的工作原理,我们首先解释一下电容是什么。

1745年,荷兰莱顿大学教授马森布罗克发明了莱顿瓶,用来储存电荷。莱顿瓶的基本原理是:通过一根导电的金属棒和金属链将电荷导入瓶子中,瓶子内外分别贴有金属箔。这样,电荷就会储存在瓶子中。现在我们知道:当正电荷导入瓶子中的金属箔上时,如果瓶子外侧金属箔接地,等量的负电荷就会被吸引到外侧金属箔上。正负电荷相互吸引,但是由于玻璃瓶是绝缘体,阻碍了它们的中和,所以电荷就储存下来了。

1752年,美国独立战争的领袖,印在百元美钞上的富兰克林利用莱顿瓶做了著名的“风筝实验”,使用风筝将天上的雷电导入了莱顿瓶中,证明了天上的闪电和地上的电是同一种物质。

其实,要储存电荷,并不一定需要瓶子。只要两个相互绝缘并且靠近的导体就能起到同样的作用,我们称之为电容器。最简单的电容器是平行板电容器。将两块金属板彼此靠近,一个极板带正电, 另一个极板带负电,由于电荷之间的吸引作用,只要两个电极没有通过外电路连通,电荷就不会跑掉。

电容器中央是绝缘的,理论上说电流是不能通过电容器的。但是,在电容器充电和放电的过程中,电容器极板上电荷量会有变化,可以看作是电流通过了电容器。

比如,我们将本来不带电的电容器与电池两极相接, 电容器就会充电,即正电荷涌入电容器的上极板,负电荷涌入电容器的下极板。电路中除了电容器两极板之间部分外,其余部分都有电流,电流方向规定为正电荷定向移动的方向,所以我们可以说,电路中出现了顺时针的充电电流。这个电流是瞬间的,当电容器的电压与电池的电压相同时,电流就消失了。类似于一个连通器,最初左侧的水面比较高,水就会流动。当两侧水面一样高时,水面就不再流动了。

当电容器充满电之后,即使我们断开电源,电容器上的电荷也不会消失。但是,如果我们将电容器两个极板用导线直接相连,正负电荷就找到了一条可以中和的通路,于是,正电荷和负电荷就会通过这个通路中和, 电路中出现逆时针的电流,这个电流称为放电电流。放电电流也是瞬间的,电荷中和完毕之后,放电电流就消失了。

如果电容器反复进行充电和放电,电路中就会反复出现充电电流和放电电流,并且充电电流与放电电流的方向是相反的。这种电流就是我们之前讲过的交流电。现在我们知道了,交流电可以通过电容器。我们知道, 试电笔是可以测量一个导线是否带电。你是否想过,如果站在椅子上用试电笔接触火线,试电笔会不会亮呢?

由于人和大地都是导体,而椅子是绝缘体,而家用电是交流电,因此可以通过电容器,即使站在椅子上用试电笔触摸火线,试电笔依然会量,表示依然有电流通过了试电笔和人体。只是这个电流比较小,人体没有什么感觉。现在我们终于可以解释电容触摸屏原理了。简单的电容屏是一个四层复合玻璃板,其中有层ITO材料。ITO是一种氧化铟锡材料,它透明,并且可以导电,适合于制造触摸屏幕。

当手指接触屏幕上某个部位时,就会与ITO材料构成耦合电容,改变触点处的电容大小。屏幕的四个角会有导线,由于交流电可以通过电容器,四个导线的电流会奔向触点,并且电流大小与到触点的距离有关。手机内部的芯片可以分析四个角的电流,通过计算就可以得到触点的位置。

更加精细的电容屏是投射式电容屏。它采用被蚀烛的ITO阵列,这些ITO层通过蛀蚀形成多个水平和垂直电极。每一部分的ITO部件也带有传感功能。当手指触摸某个部位时,与阵列电容进行耦合,改变了屏幕上的电场,通过传感器和芯片分析电场合电流变化,就可以感知触点位置。相比于之前的四角电流电容屏幕,这种电容屏可以实现多点触控,应用更加广泛。

人的手指是导体,才会影响电容屏幕,而使用绝缘物质触碰电容屏幕就没法操作手机。手机贴膜也可以使用,这是因为手指与ITO层原本也不需要接触,中间本身就有玻璃绝缘层,贴绝缘膜的作用只是相当于玻璃厚了一点点,电流依然可以流过手指和屏幕中的导体所形成的电容器。不过,如果手套太厚了,触碰触摸屏时手指与屏幕中的导体相隔太远,电容比较小,不足以被传感器感知,所以戴着厚手套是不能操作手机的。

其实,电容传感器在生活中还有很多,比如厕所里常见的自动冲水装置、自动干手机等,许多都是利用过电容传感的。当人体靠近或原离时,人体与装置构成的电容发生了变化,传感器感受到这种变化,控制电路进行某种操作。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭