当前位置:首页 > 公众号精选 > 嵌入式微处理器
[导读]一、内存对齐的原因  1.平台原因(移植原因):一些资料上是这样说的,“不是所有的硬件平台都能访问任意地址上的任意数据;某些硬件平台只能在某些特定地址处取某些特定的数据,否则就会抛出硬件异常”。也就是说在计算机在内存读取数据时,只能在规定的地址


一、内存对齐的原因

 1.平台原因(移植原因):一些资料上是这样说的,“不是所有的硬件平台都能访问任意地址上的任意数据;某些硬件平台只能在某些特定地址处取某些特定的数据,否则就会抛出硬件异常”。也就是说在计算机在内存读取数据时,只能在规定的地址处读数据,而不是内存中任意地址都是可以读取的。


2.效率原因:正是由于只能在特定的地址处读取数据,所以在访问一些数据时,对于访问未对齐的内存,处理器需要进行两次访问;而对于对齐的内存,只需要访问一次就可以。其实这是一种以空间换时间的做法,但这种做法是值得的。

二、结构体内存对齐规则

1.第一个成员在结构体变量偏移量为0 的地址处,也就是第一个成员必须从头开始。


2.其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。对齐数 为编译器默认的一个对齐数与该成员大小中的较小值。vs中默认值是8 Linux默认值为4(当然可以通过#pragma pack()修改),但修改只能设置成1,2,4,8,16。


3.结构体总大小为最大对齐数的整数倍。(每个成员变量都有自己的对齐数)


4.如果嵌套结构体,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(包含嵌套结构体的对齐数)的整数倍。

三、内存对齐规则应用

这四条规则可能不太好理解,下面我们就通过几个实例进行讲解:


例题1


结果是8,我们来分析一下为什么结果是 8。c1是char型,占一个字节,第一个成员即 c1 在结构体变量偏移量为0 的地址处。


c2是char型,占一个字节,要对齐到对齐数的整数倍的位置。对齐数 = 编译器默认的一个对齐数与该成员大小中的较小值,vs中默认值是8,取较小值1,char类型的对齐数是1,所以对齐到1 的整数倍,那就是偏移量为1开始的地址空间。


i是int类型,占四个字节,要对齐到对齐数的整数倍的位置。int类型的对齐数就是 4,所以对齐到4 的整数倍。 


内存分布图 1




例题2

       

结果是12,来看一下过程。c1是char型,占一个字节,对应到结构体变量偏移量为0 的地址处。i是int型,占四个字节,对齐数就是4,对齐到4的整数倍位置处,即偏移量为4开始的地址空间。


c2是char型,占一个字节,对齐到1 的整数倍,那就是下一个地址空间,对齐到偏移量为8的地址空间。结构体总大小为最大对齐数的整数倍,所以为对齐数4的整数倍,现在已经用了9个字节的空间,那么总大小就是12个字节空间。所以输出结果是12。


内存分布图 2




例题3

 

结果是32,我们来看一下分析:根据上面讲解的容易得出struct S3占16个字节。那我们来看一下struct S4的大小,struct S4中有三个成员变量,第一个char型,占一个字节,对齐到偏移量为0的地址处。


第二个成员是结构体嵌套使用,结构体S3变量s3,刚才已经得出占16个字节,所以第二个成员对齐数是16,又因为对齐数是编译器默认数与成员对齐数中的较小值,vs默认对齐数是8,取较小值8,所以对齐到偏移量为8的地址空间处。


第三个成员是double型,占8个字节,对应到8的整数倍即偏移量24的地址处。结构体总大小是最大对齐数8的整数倍,所以是32。


内存分布图3 



本文授权转载自公众号“C语言编程”,作者薛定谔的coding猫


-END-




推荐阅读



【01】stm32几种低功耗模式的实现和差别
【02】长见识了:STM8、STM32可以超频吗?
【03】STM32:从菜鸟到牛人就是如此简单!
【04】干货 | STM32单片机按键消抖和FPGA按键消抖大全
【05】学习STM32的一些经验分享


免责声明:整理文章为传播相关技术,版权归原作者所有,如有侵权,请联系删除

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

嵌入式ARM

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭