当前位置:首页 > 物联网 > 可穿戴设备
[导读]噪音与放大器相生相伴,是无可避免的,所谓降低噪音,目的是将其降低至可接受的范围,而不是将其根除:信噪比只能尽量提高,但不能大至无限。音频电路噪音按来源可粗略分为电磁干扰、地线干扰、机械噪声与热噪声几类

噪音与放大器相生相伴,是无可避免的,所谓降低噪音,目的是将其降低至可接受的范围,而不是将其根除:信噪比只能尽量提高,但不能大至无限。音频电路噪音按来源可粗略分为电磁干扰、地线干扰、机械噪声与热噪声几类,下面来对噪音来源作简要分析,并提出一些经实践证明行之有效的解决手段,希望能与同行探讨。

一 电磁干扰

电磁干扰主要来源是电源变压器和空间杂散电磁波。

音频电路尤其是早期的模拟音频电路,多数是由市电提供电源,因此必然要使用电源变压器。电源变压器工作过程是一个“电—磁—电”的转换过程,在电磁转换过程中会产生一定的磁泄露,变压器泄露的磁场被放大电路拾取并放大,最终经过扬声器发出交流声。

杂散电磁波主要来自交流电源线、强电流线、扬声器及功率分频器、无线发射设备,产生原因在这里不做深入讨论。杂散电磁波在传输、感应的形式上与电源变压器类似,杂散磁场频率范围很宽,有用家反映有源音箱夜晚时莫名其妙接收到当地电台广播就是典型的杂散电磁波干扰。

另外一个需引起重视的干扰源为整流电路。滤波电容在开机进入正常状态后,仅在交流电峰值时补充电流,充电波形是一个宽度较窄的强脉冲,电容量越大,脉冲强度也越大,从电磁干扰角度看,滤波电容并非越大越好,整流管与滤波电容之间走线应尽量缩短,同时尽量远离功放电路,PCB空间不允许则尽量用地线环绕,PCB走线适当拉开距离。

电磁干扰主要防治措施:

1降低输入阻抗

电磁波主要被导线及PCB板走线拾取,在一定条件下,导线拾取电磁波基本可视为恒功率。根据P=U^U/R推导,感应电压与电阻值的平方成反比,即放大器实现低阻抗化对降低电磁干扰很有利。 例如一个放大器输入阻抗由原20K降低至10K,感应噪声电平将降至约0.7倍的水平。目前主流音源电脑声卡、随身听、MP3带载能力强,甚至可直接推动32欧耳塞,因此可以将后级放大线路输入阻抗降低,降低输入阻抗对音质造成的影响极微弱,完全可忽略不计,试验时曾尝试将有源音箱输入阻抗降至2KΩ,未感觉音质变化,长期工作也未见异常。

2 增强高频抗干扰能力

  针对杂散电磁波多数是中高频信号的特点,在放大器输入端对地增设瓷片电容,容值可在47---220P之间选取,电容与线路阻抗构成的一阶无源滤波器,频率转折点比音频范围高两至三个数量级,对音频(20HZ—20KHZ)信号的幅频特性的影响可忽略。

3 注意电源变压器安装方式

  在成本允许的条件下采用质量较好的电源变压器,尽量拉开变压器与PCB之间的距离,调整变压器与PCB之间的位置,将变压器与放大器敏感端(输入端)尽量远离;EI型电源变压器各方向干扰强度不同,注意尽量避免干扰强度最强的Y轴方向对准PCB。

4 金属外壳须接地

  对于HIFI独立功放来说,设计规范的产品在机箱上都有一个独立的接地点,该接地点其实是借助机箱的电磁屏蔽作用降低外来干扰;音量、音调电位器外壳,条件允许的话尽量接地,实践证明,该措施对工作于电磁环境恶劣条件下的PCB十分有效。

二 地线干扰

电子产品的地线设计是极其重要的,无论低频电路还是高频电路都必须要遵照设计规则。高频、低频电路地线设计要求不同,高频电路地线设计主要考虑分布参数和地线阻抗,多为环地;低频电路主要考虑大小信号地电位叠加(参考电位),强弱信号需独立走地线。从提高信噪比、降低噪音角度看,模拟音频电路应划归低频电子电路,严格遵循“独立走线、一点接地”原则,可显著提高信噪比。

音频电路地线可简单划分为电源地(功率地)和信号地,电源地主要是指滤波、退耦电容地线,小信号地是指输入信号地线、反馈地线。小信号地与电源地不能混合,否则必将引发很强的交流声:滤波和退耦电容充放电在电路板走线上必然存在一定压降,小信号地与该强电地重合,势必会受此波动电压影响,也就是说,小信号参考点电压不为零。信号输入端与信号地之间的电压变化等效于在放大器输入端注入信号电压,地电位变化将被放大器拾取并放大,产生交流声。

增加地线线宽、背锡处理只能在一定程度上降低地线干扰,但治标不治本,个别未严格将地线分开的PCB由于地线宽、走线很短,同时放大级数很少、退耦电容容量很小,因此交流声尚在勉强可接受范围内,只是特例,没有参考意义。举例说明:设PCB某段地线直流电阻为75毫欧,退藕电容瞬间充电电流为20mA,该放大器放大倍数是40倍,则由于退耦电容充电电流引起的参考点(地线)电位波动,被拾取、放大后,在放大器输出端有60mV的、与充电电流一致(这里要注意,地线引起的交流噪音是100HZ,而不是电磁感应的50HZ)的噪音波形,60mV的电压信号,即使在小口径、低频响应差的扬声器单元上,也足以引起可观的噪音。

正确的布线方法是,选择主滤波电容引脚作为集中接地点,强、弱信号地线严格区分开,在总接地点汇总。

下面以最常见的功放块LM1875(TDA2030A)为例,以生产商推荐线路说明一下:

1 大小信号地的区分:
 
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭