工业自动化的眼睛,工业自动化为何使用机器视觉
扫描二维码
随时随地手机看文章
工业自动化在我国的发展已日渐成熟,对于工业自动化,大家或多或少有所了解。为增进大家对工业自动化的认识,本文将基于两大方面介绍工业自动化:1.机器视觉在工业自动化的应用,2.工业自动化为何使用机器视觉系统。如果你对本文即将涉及的内容具有兴趣,不妨继续往下阅读哦。
一、机器视觉于工业自动化的应用
机器视觉长期以来用于工业自动化系统中,以通过取代传统上的人工检查来提高生产质量和产量。从拾取和放置、对象跟踪到计量、缺陷检测等应用,利用视觉数据可以通过提供简单的通过失败信息或闭环控制回路,来提高整个系统的性能。
视觉的使用并不仅仅在工业自动化领域;我们也看到了相机在日常生活中的大量应用,例如用于计算机、移动设备,特别是在汽车中。摄像头仅仅是在几年前才被引入到汽车中,但是现在汽车中已经配备了大量摄像头,以为驾驶员提供完整的360°车辆视图。
但是谈到机器视觉领域的最大技术进步,可能一直是处理能力。随着处理器性能每两年翻一番,以及对多核CPU、GPU和FPGA等并行处理技术的持续关注,视觉系统设计人员现在可以将高度复杂的算法应用于视觉数据,并创建更智能的系统。
处理技术的发展带来了新机会,而不仅仅是更智能或更强大的算法。让我们看看为制造机器增加视觉功能的应用案例。这些系统传统上设计为形成协作分布式系统的智能子系统网络,该系统允许模块化设计(见图1)。
图1:智能子系统网络,其设计为构成协作分布式控制系统。该系统允许模块化设计,但采用这种以硬件为中心的方法可能导致性能瓶颈。
然而,随着系统性能的提高,采用这种以硬件为中心的方法可能遇到困难,因为这些系统通常采用时间关键和非时间关键协议的混合来联接。通过各种通信协议将这些不同的系统联接在一起,会导致延迟、确定性和吞吐量方面出现瓶颈。
例如,如果设计者试图利用这种分布式架构开发应用,并且必须在视觉和运动系统之间保持紧密集成,例如在视觉伺服中所需要的,那么可能遇到由于缺乏处理能力而带来的主要性能挑战。此外,由于每个子系统都具有自己的控制器,这实际上会降低处理效率。
最后,由于这种以硬件为中心的分布式方法,设计人员不得不使用不同的设计工具来设计视觉系统中每个子系统的特定视觉软件,以及用于运动系统的运动专用软件等。这对于规模较小的设计团队而言尤其具有挑战性,因为一个小团队甚至是一名工程师,需要负责设计中的许多部分。
二、工业自动化为何使用机器视觉系统
在工业自动化控制中使用机器视觉系统有以下五个主要原因:
精确性——由于人眼有物理条件的限制,在精确性上机器有明显的优点。即使人眼依靠放大镜或显微镜来检测产品,机器仍然会更加精确,因为它的精度能够达到千分之一英寸。
重复性——机器可以以相同的方法一次一次的完成检测工作而不会感到疲倦。与此相反,人眼每次检测产品时都会有细微的不同,即使产品时完全相同的。
速度 ——机器能够更快的检测产品。特别是当检测高速运动的物体时,比如说生产线上,机器能够提高生产效率。
客观性——人眼检测还有一个致命的缺陷,就是情绪带来的主观性,检测结果会随工人心情的好坏产生变化,而机器没有喜怒哀乐,检测的结果自然非常可观可靠。
成本 ——由于机器比人快,一台自动检测机器能够承担好几个人的任务。而且机器不需要停顿、不会生病、能够连续工作,所以能够极大的提高生产效率。
由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。
以上便是此次小编带来的“工业自动化”相关内容,通过本文,希望大家对工业自动化中的机器视觉具备一定的认知。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!