当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 在12月初举办的NeurIPS会议上,IBM展示了一款新型人工智能芯片。 IBM的研究人员声称,他们已开发出一个更加高效的模型用于处理神经网络,该模型只需使用8位浮点精度进行训练,推理(

在12月初举办的NeurIPS会议上,IBM展示了一款新型人工智能芯片。

IBM的研究人员声称,他们已开发出一个更加高效的模型用于处理神经网络,该模型只需使用8位浮点精度进行训练,推理(inferencing)时更是仅需4位浮点精度。该研究的成果已于2018年12月初在国际电子元件会议(International Electron Devices MeeTIng,IEDM)和神经信息处理系统大会(Conference on NeuralInformaTIon Processing Systems,NeurIPS)上发布。

简而言之,IBM展示了专用于减少精度处理单元的定制硬件,以及能够利用该硬件进行深度神经网络(DNN)训练和推理的新算法。其主要目标在于提高硬件的能效,使其可以应用于范围更广泛的人工智能解决方案。

下一代人工智能应用程序需要更快的响应时间、更大的人工智能工作负载以及来自众多数据流的多模式数据。为了释放人工智能的全部潜能,我们重新设计了将人工智能考虑在内的硬件:从加速器到用于人工智能工作负载的特定用途硬件(例如我们的新芯片),以及最终用于人工智能的量子计算技术。使用新的硬件解决方案扩展人工智能是IBM研究院(IBM Research)更广泛努力的一部分,以期从范围狭窄的人工智能(通常用于处理具体的、界限清楚的任务)转向范围广泛的人工智能(跨越各个学科,可帮助人类解决最迫切的问题)。

具体而言,IBM研究院提出了可提供8位浮点(FP8)精度用于训练神经网络的硬件。8位浮点精度是16位浮点精度(FP16)的一半,而16位浮点精度自2015年以来一直是深度神经网络工作的事实标准。(提议的硬件将依靠FP16来累积点积,而不是现在使用的FP32。)借助于稍后介绍的新算法技术,IBM的研究人员表示,他们可以跨各种深度学习模型保持精确度。事实上,他们记录在案了使用FP8精度基于图像、语音和文本数据集对深度神经网络所进行的训练,并实现了与基于FP32的训练相当的模型精确度。

降低精度的模型基于三项软件创新:一种新的FP8格式,让用于深度神经网络训练的矩阵乘法和卷积计算可在不损失精确度的情况下工作;一种“基于组块的计算”技术,使得只需使用FP8乘法和FP16加法即可处理神经网络成为现实;并且在加权更新过程中使用浮点随机舍入,允许以16位浮点精度(而不是32位浮点精度)计算这些更新。

IBM展示的硬件是一款基于“新式数据流核心”的14纳米处理器。该处理器由降低精度的数据流引擎、16位浮点精度组块加法引擎和核心上内存及内存访问引擎组成。研究人员声称,与现在的平台相比,这种设计有可能使训练速度提高2到4倍。其中部分改进是用于训练模型的位宽减少了2倍的结果,但其余改进则是因为用于利用降低的精度的软件技术。

也许更重要的是,IBM研究院表示,由于其FP8/FP16模型相较标准FP16/FP32模型而言所需的内存带宽和存储空间更少,并且因为其硬件是为处理这些神经网络而定制的,能效可提高2-4倍以上。研究人员表示,这将使深度神经网络模型能够在一些边缘设备上进行训练,而不仅仅是在数据中心服务器上进行训练。

研究人员还发表了一篇关于在多个深度学习应用程序中使用4位浮点精度推理,而同样不损失精确度的论文(目前,大部分推理基于使用8位浮点精度或更多位浮点精度的计算)。此处的意义在于,位宽的减小将再次提高吞吐量和能效。对降低精度的需求也使得基于在训练期间优化的位精度构建用于训练和推理的统一架构更加自然。根据研究人员的说法,由于减少了专用于计算的处理器面积并拥有在内存中保留模型和激活数据的能力,此类硬件可以带来推理性能的超线性提升。

相关研究领域需要与将这种降低精度的模型应用于模拟芯片相关,模拟芯片天生不如数字芯片精确,但能效却高得多。IBM的研究人员开发了一种使用相变存储器(PCM)的8位浮点精度模拟加速器,它可以充当用于处理神经网络的计算基板和存储介质。根据2018年早些时候发布的工作成果,IBM研究院已经实施了该技术的创新加成,称为预测PCM(Projected PCM,Proj-PCM),它可以减少PCM硬件的一些令人烦恼的不精确性。研究团队认为,该设计可为物联网(IoT)和边缘设备等功率受限环境中的人工智能训练和推理提供高性能水平。

尽管所有这些仍处于研究阶段,但IBM显然对构建自己的人工智能芯片和加速器并将其交付到客户手中感兴趣。他们计划如何将该技术商业化仍然有待观察。无论如何,如果降低精度的训练和推理流行起来,IBM将面临很多竞争。这些竞争不仅仅来自将相应调整自己的处理器平台的英特尔英伟达等行业巨头,它们还来自似乎每天都在涌现的人工智能芯片初创公司。在一个如此飞速变化的环境中,成功将青睐于最灵活变通的参与者。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭