AI在肾肿瘤影像学诊断及治疗中有巨大的价值和广阔的应用空间
扫描二维码
随时随地手机看文章
近年来随着计算机硬件及软件的快速发展,计算机的运算能力得到了极大的提高,这使得沉寂了多年的人工智能(artificial intelligence,AI)再一次登上了舞台。AI已在多个领域取得了突破和进展,在生物医学领域也不例外。AI与医学影像相结合是其在生物医学领域研究的重点方向之一,尤其是肿瘤影像领域。肾肿瘤是临床常见的肿瘤病变之一,AI在肾肿瘤影像学诊断及治疗中有巨大的价值和广阔的应用空间。
1. AI在影像学领域中的应用现状
AI是指研究开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门信息科学。当前AI在医学影像中的应用主要体现在使用以深度学习为代表的方法对影像大数据进行挖掘,搜索和提取相关信息,而影像组学则是此类工作模式的代表。
AI在医学影像中的应用可以概括为以下3个方面。① 疾病筛查检出:使用AI的方法快速识别及检出病灶,提高病变检出效率,降低漏诊率,减少放射科医师寻找病灶所耗费的时间;② 协助放射科医师诊断:对病灶进行分析,给放射科医师提供额外的影像诊断信息,使医师可以做出更为精确的临床诊断;③ 提供具有附加价值的工作:AI可以辅助影像数据处理,如使用AI软件进行肿瘤边界分割重建、病变体积测量等,辅助临床和研究工作。
AI在医学影像中的研究和应用已取得了一定的进展,包括肺部病变、视网膜病变、骨骼病变及神经系统病变等。其中AI在肺结节方面的研究和应用进展最为迅速,取得了大量成果,包括肺结节的检出、分割和性质判断等。在其他肿瘤影像领域,AI也取得了不俗的研究成果,如Bahl等回顾性收集1 006例乳腺高危病灶,发现基于随机森林机器学习建立的模型能有效预测乳腺高危病灶进展为乳腺癌的风险,从而改善了高风险乳腺病灶患者的临床管理。Chang等运用卷积神经网络(convoluTIonal neural network,CNN)分析496例胶质瘤(Ⅱ~Ⅳ级)的MRI影像特征,建立预测模型,对肿瘤的异柠檬酸脱氢酶(isocitrate dehydrogenase,IDH)突变情况进行预测,在验证组中的准确率达89.1%。
2. AI在肾肿瘤影像学中的研究现状尽管影像学检查在肾肿瘤诊断和临床管理中具有重要价值,但目前肾肿瘤临床影像存在部分肾肿瘤良恶性鉴别困难、晚期肾细胞癌疗效评价困难等问题。这些通过传统影像学方法难以有效解决的问题虽然还未引起AI研究领域的足够重视,但AI在肾肿瘤影像局部领域已有所应用,包括鉴别诊断、机制研究及治疗预后评价等。
2.1 肾细胞癌与肾良性肿瘤的鉴别诊断
目前,病理诊断是肾肿瘤确诊的金标准。尽管肾细胞癌在影像上具有较为明确的特征,如对比剂增强扫描时肾透明细胞癌快进快出的强化特点和乳头状肾细胞癌在磁共振T2WI上的低信号表现,但在日常临床工作中,医师凭借现有的影像检查技术(包括CT和MRI检查)常难以实现肾细胞癌与某些肾良性肿瘤的术前鉴别诊断,如乏脂肪血管平滑肌脂肪瘤。此类良性肿瘤在大多数情况下只需保守治疗或随访,因此实现肾细胞癌与肾良性肿瘤的术前准确诊断尤其重要。
Lee等回顾性收集39例乏脂肪血管平滑肌脂肪瘤和41例肾透明细胞癌患者,通过在腹部CT增强图像上提取肿瘤相关特征(包括hand crafted features和deep features)并结合这些特征形成深度特征自动分类方法以区分肾透明细胞癌与乏脂肪血管平滑肌脂肪瘤,准确率达76.6%。Feng等尝试通过深度学习的方法区分小(