当前位置:首页 > 公众号精选 > 小麦大叔
[导读]本文旨在学习如何快速简单地对运算放大器进行分析; 1 运算放大器(OPAMP) 2 虚短和虚断 3 反向放大器 3.1 典型电路 3.2 放大倍数 3.3 仿真结果 4 同向放大器 4.1 双电源 4.2 双电源同向放大器仿真结果 4.3 单电源 4.4 双电源同向放大器仿真结果 5 总结 1 运

本文旨在学习如何快速简单地对运算放大器进行分析;


  • 1 运算放大器(OPAMP)

  • 2 虚短和虚断

  • 3 反向放大器

    • 3.1 典型电路

    • 3.2 放大倍数

    • 3.3 仿真结果

  • 4 同向放大器

    • 4.1 双电源

    • 4.2 双电源同向放大器仿真结果

    • 4.3 单电源

    • 4.4 双电源同向放大器仿真结果

  • 5 总结


1 运算放大器(OPAMP)

集成运算放大器有同向输入端和反向输入端,具体如下图所示;

输出电压 满足关系    ,集成运放最终放大的是差模信号,在没有引入反馈的情况下,电压的放大倍数为差模开环放大倍数,这里记作 ,因此当运放工作在线性区域的时候,满足


集成运放的电压传输特性如下图所示;

  • 工作在 线性区的时候,则曲线的斜率为电压的放大倍数;
  • 工作在非线性区的时候,即处于饱和状态的情况下,输出电压为

2 虚短和虚断

虚短前面提到,集成运算放大器的开环放大倍数很大,一般通用型的运算放大器的开环电压放大倍数都在80 dB以上,但是运放的输出电压是有限制的,一般 10V~14V,然而运放的差模输入电压不足1 mV,因此可以输入两端可以近似等电位,就相当于 短路。  开环电压放大倍数越大,两输入端的电位越接近相等,这种特性称之为虚短

虚断集成运算放大器具有输入高阻抗的特性,一般同向输入端和反向输入端的输入电阻都在1MΩ以上,所以输入端流入运放的电流往往小于1uA,远小于输入端外电路的电流。所以这里通常可把运放的两输入端视为开路,并且运放的输入电阻越大,同向和反向输入两端越接近开路。在运放处于线性状态时,根据这个特性可以把两输入端视为等效开路,简称虚断

3 反向放大器

3.1 典型电路

3.2 放大倍数

根据虚短和虚断,可以求出运算放大器的放大倍数:

  • 假设流过电阻 的电流为 ;流过电阻 的电流为
  • 假设运算放大器同向输入端电压为 ,反向输入端电压为

根据虚短,可以得到:

根据虚断,可知电阻 为串联关系:则满足:

最终求代数式可以得到:

3.3 仿真结果

为 频率50Hz,幅值为 500mV的正弦波,具体设置如下图所示;*[HTML]:

增益

所以输入输出关系为:

仿真结果如下图所示;


4 同向放大器

4.1 双电源

同向放大器同样可以使用虚短虚断去分析;具体电路如下图所示;推导过程:

  • 假设流过电阻 的电流为 ;流过电阻 的电流为
  • 假设运算放大器同向输入端电压为 ,反向输入端电压为

根据虚短,可以得到:

根据虚断,可知电阻 为串联关系:则满足:

最终求解得到:

4.2 双电源同向放大器仿真结果

为 频率50Hz,幅值为 500mV的正弦波,具体设置如下图所示;

增益

所以输入输出关系为:

仿真结果如下图所示;


4.3 单电源

与上面双电源供电不同,如果运算放大器使用单电源,为了输出正常,如果使用单电源供电,非反向放的OP放大器必须与地线关联,如果 是接地,那 输入端需要有 的压降,这个可以通过电阻分压得到。单电源的电路如下图所示;这里增加了两个20KΩ的分压,在 端增加了2.5V的输入电压。

4.4 双电源同向放大器仿真结果

输入与上面的实验相同此处不再赘述;

增益

所以输入输出关系为:


5 总结

本文分析的运算放大器都是比较常用且简单的类型,当前只给出了如何计算输入和输出的关系,如果作为硬件设计人员,还需要关注更多的细节,更多运算放大器的指标,失调电压,温漂等等,笔者能力有限,无法进行分析,如果单纯作为读懂一般的运算放大电路还是够用的。

文中难免有错误和纰漏之处,请大佬们不吝赐教 创作不易,如果本文帮到了您;请帮忙点个赞 ;



长按下图二维码关注,独自前进,走得快;结伴而行,走得远;在这里除了肝出来的文章,还有一步一个脚印学习的点点滴滴;








免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭