当前位置:首页 > 智能硬件 > 人工智能AI
[导读] Data Science Central网站主编、有多年数据科学和商业分析模型从业经验的Bill Vorhies曾撰文指出,过去一年人工智能和深度学习最重要的发展不在技术,而是商业模式的转变&m

Data Science Central网站主编、有多年数据科学和商业分析模型从业经验的Bill Vorhies曾撰文指出,过去一年人工智能和深度学习最重要的发展不在技术,而是商业模式的转变——所有巨头纷纷将其深度学习IP开源。 毋庸置疑,“开源浪潮”是2016年人工智能领域不可忽视的一大趋势,而其中最受欢迎的项目则是谷歌的深度学习平台TensorFlow。下文就从TensorFlow说起,盘点2016年AI开源项目,最后统计了Github最常用深度学习开源项目Top 50。

谷歌开源:围绕TensorFlow打造深度学习生态圈

1.Google第二代深度学习引擎TensorFlow开源

2015年11月,谷歌开源深度学习平台TensorFlow。2016年4月,谷歌推出了分布式TensorFlow。现在,TensorFlow已经成为业内最受欢迎的深度学习平台之一。

2.谷歌开源全球最精准语言解析器SnytaxNet

2016年5月13日,Google Research宣布,世界准确度最高的自然语言解析器SyntaxNet开源。谷歌开源再进一步。据介绍,谷歌在该平台上训练的模型的语言理解准确率超过90%。SyntaxNet是一个在TensoFlow中运行的开源神经网络框架,提供自然语言理解系统基矗谷歌公开了所有用用户自己的数据训练新SyntaxNet模型所需要的代码,以及谷歌已经训练好的,可用于分析英语文本的模型Paesey McParseface。

Paesey McParseface建立于强大的机器学习算法,可以学会分析句子的语言结构,能解释特定句子中每一个词的功能。此类模型中,Paesey McParseface是世界上最精确的,谷歌希望它能帮助对自动提取信息、翻译和其他自然语言理解(NLU)中的应用感兴趣的研究者和开发者。

3.谷歌推出Deep&Wide Learning,开源深度学习API

2016年6月29日,谷歌推出Wide & Deep Learning,并将TensorFlow API开源,欢迎开发者使用这款最新的工具。同时开源的还有对Wide & Deep Learning的实现,作为TF.Learn应用程序接口的一部分,让开发者也能自己训练模型。

4.谷歌开源TensorFlow自动文本摘要生成模型

2016年8月25日,谷歌开源了TensorFlow中用于文本信息提取并自动生成摘要的模型,尤其擅长长文本处理,这对自动处理海量信息十分有用。自动文本摘要最典型的例子便是新闻报道的标题自动生成,为了做好摘要,机器学习模型需要能够理解文档、提取重要信息,这些任务对于计算机来说都是极具挑战的,特别是在文档长度增加的情况下。

5.谷歌开源图像分类工具TF-Slim,定义TensorFlow复杂模型

2016年8月31日,谷歌宣布开源TensorFlow高级软件包TF-Slim,能使用户快速准确地定义复杂模型,尤其是图像分类任务。自发布以来,TF-Slim已经得到长足发展,无论是网络层、代价函数,还是评估标准,都增加了很多类型,训练和评估模型也有了很多便利的常规操作手段。这些手段使你在并行读取数据或者在多台机器上部署模型等大规模运行时,不必为细节操心。此外,谷歌研究员还制作了TF-Slim图像模型库,为很多广泛使用的图像分类模型提供了定义以及训练脚本,这些都是使用标准的数据库写就的。TF-Slim及其组成部分都已经在谷歌内部得到广泛的使用,很多升级也都整合进了tf.contrib.slim。

6.谷歌开源大规模数据库,10亿+数据,探索RNN极限

2016年9月13日,谷歌宣布开源大规模语言建模模型库,这项名为“探索RNN极限”的研究今年2月发表时就引发激论,如今姗姗来迟的开源更加引人瞩目。研究测试取得了极好的成绩,另外开源的数据库含有大约10亿英语单词,词汇有80万,大部分是新闻数据。这是典型的产业研究,只有在谷歌这样的大公司才做得出来。这次开源也应该会像作者希望的那样,在机器翻译、语音识别等领域起到推进作用。

7.谷歌开源TensorFlow图说生成模型,可真正理解图像

2016年9月23日,谷歌宣布开源图说生成系统Show and Tell最新版在TensorFlow上的模型。该系统采用编码器-解码器神经网络架构,分类准确率达93.9%,在遇到全新的场景时能够生成准确的新图说。谷歌表示,这说明该系统能够真正理解图像。

8.谷歌开源超大数据库,含800万+视频

2016年9月28日,谷歌在官方博客上宣布,将含有800万个Youtube视频URL的视频数据库开源,视频总时长达到了50万个小时。一并发布的还有从包含了4800个知识图谱分类数据集中提取的视频级别标签。这一数据库在规模和覆盖的种类上都比现有的视频数据库有显著提升。例如,较为著名的Sports-1M数据库,就只由100万个Youtube视频和500个运动类目。谷歌官方博客上说,在视频的数量和种类上,Youtube-8M代表的是几乎指数级的增长。

9.谷歌发布Open Images图片数据集,包含900万标注图片

2016年10月1日,继前天发布800万视频数据集之后,谷歌又发布了图片数据库Open Images,包含了900万标注数据,标签种类超过6000种。谷歌在官方博客中写到,这比只拥有1000个分类的ImageNet更加贴近实际生活。对于想要从零开始训练计算机视觉模型的人来说,这些数据远远足够了。就在12月,谷歌还开源了Open Images并行下载工具的脚本,5天速度最高超过200 M。

10.DeepMind开源AI核心平台DeepMind Lab(附论文)

2016年12月5日,DeepMind宣布将其AI核心平台DeepMind Lab开源。DeepMind实验室把全部代码上传至Github,供研究人员和开发者进行实验和研究。DeepMind Lab这一平台将几个不同的AI研究领域整合至一个环境下,方便研究人员测试AI智能体导航、记忆和3D成像等能力。值得一提的是,这些代码也包括AlphaGO的代码,谷歌希望以此增加AI能力的开放性,让更多开发者参与AI研究,观察其他开发者是否能够挑战并打破DeepMind现在的纪录。

Facebook开源:贯彻理念

1.Facebook开源围棋引擎DarkForest

6个月前,Facebook将其围棋引擎DarkForest开源。现在训练代码已经全部发布。Github链接:https://github.com/facebookresearch/darkforestGo。

2.Facebook开源文本分类工具fastText,不用深度学习也可以又快又准

2016年8月19日,Facebook AI实验室(FAIR)宣布开源文本分析工具fastText。fastText既可以用于文本分类,又能用于学习词汇向量表征。在文本分类的准确率上与一些常用的深度学习工具不相上下,但是在时间上却快很多——模型训练时间从几天减少到几秒。除了文本分类,fastText也能被用于学习词语的向量表征,Facebook称fastText比常用的Word2vec等最先进的词态表征工具表现都要好得多。

3.Facebook开源计算机视觉系统deepmask,从像素水平理解图像(附论文及代码)

2016年8月26日,Facebook宣布开源计算机视觉系统deepmask,称该系统能“从像素水平理解物体”,Facebook希望开源能加速计算机视觉的发展。不过,Facebook并没有在自家产品中使用这些工具,像这样落实到具体应用前就开源,跟通常所说的“开源”有些不同。对此,Facebook人工智能团队FAIR的负责人Yann LeCun 曾表示,正是因为FAIR 做基础的、不受制于公司短期效益的研究,才能真正推进人工智能技术发展。

4.Facebook 开源AI 训练和测试环境CommAI-env

2016年9月27日,Facebook 宣布开放AI 训练和测试环境CommAI-env,可以用任何编程语言设置智能体。据介绍,CommAI-env 这个平台用于训练和评估AI 系统,尤其是注重沟通和学习的AI 系统。与用强化学习从玩游戏到下围棋都能做的OpenAI Gym 不同,Facebook 的CommAI-env 侧重基于沟通的训练和测试,这也是为了鼓励开发人员更好地打造能够沟通和学习的人工智能,呼应该公司的十年规划。Facebook 还表示,CommAI-env 会持续更新,并在成熟后举办竞赛推进AI 的开发。

在AI 测试环境方面,Facebook 还开源了CommNet,这是一个让基于神经网络的代理更好交互、实现合作而研发的模型,与CommAI-env 配套。12月,Facebook 还开源了 TorchCraft,在深度学习环境 Torch 与星际争霸之间搭起了桥梁,方便研究人员使用控制器,编写能够玩星际争霸游戏的智能代理。

5.Facebook 贾扬清发文介绍 Caffe2go,手机就能运行神经网络

2016年11月8日,Caffe作者、Facebook 研究员贾扬清在官方网站上发文介绍了新的机器学习框架 Caffe2go,并表示在接下来的几个月将其部分开源。Caffe2go 规模更小,训练速度更快,对计算性能要求较低,在手机上就行运行,已经成为 Facebook 机器学习的核心技术。

OpenAI

1.OpenAI 推出代理训练环境 OpenAI Gym

创立于2015年底的非盈利机构 OpenAI 的成立打破了谷歌、Facebook 等巨头霸占 AI 领域的格局,但其创始人、特斯拉CEO马斯克多次发表人工智能威胁论。马斯克创立 OpenAI 目的何在?2016年5月4日,OpenAI 发布了人工智能研究工具集 OpenAI Gym,用于研发和比较强化学习算法,分析 OpenAI Gym 或可找出马斯克的真正动机。

2.另一种开源:OpenAI 介绍深度学习基础框架

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭