当前位置:首页 > 医疗电子 > 医疗电子技术文库
[导读] 设想一下,你去一家医院看病,一进诊疗室的门就有一位护士不断地为你拍照,然后这些照片会上传到一台AI设备里,这个设备则会根据照片里你的模样来进行病情诊断……而在整个过程

设想一下,你去一家医院看病,一进诊疗室的门就有一位护士不断地为你拍照,然后这些照片会上传到一台AI设备里,这个设备则会根据照片里你的模样来进行病情诊断……而在整个过程中,不会出现任何专业的人类医生。

是不是觉得不可思议?即使现在AI医疗发展得很快,一些AI在医疗领域实现了不同程度的落地,比如AI识别医学影像、药物研发、辅助诊断等,但这些AI起到的基本还是辅助作用,最终负责决断的依旧是人。让AI执证上岗,独立地做临床诊断,似乎从未见过。

然而,这样的“看病模式”可能已经开始了。

近日,美国食品和药物监管局(FDA)首次批准了一种人工智能诊断设备IDx-DR,该设备可以通过观察视网膜的照片来检测一种眼科疾病,并且不需要专家医生的参与。

也就是说,这个叫IDx-DR的AI设备竟然有了上岗证,成为了一名真正的“医生”!

科学家们不断攻破一个又一个的技术难关,我们高兴的同时,却也有隐忧。医疗AI之路越走越顺畅,但现在就出现独立的AI医生,合适吗?

AI医生要“独立”,还缺乏完整的产业链

智能相对论(aixdlun)分析师颜璇认为,我们要想让AI医生独立起来,必须在一开始就深入研究产业布局和各产业链每个环节的协调和共生的发展,否则,只要里面有一个环节发展不良,就会导致智能医疗的结构出现上下游之间的断档,亦或被技术伦理问题所牵绊。

1.AI医生的落地还没有标准

从患者端或者是其它的医疗使用端来看,医疗AI其实在短时间内不会有特别大的变化。因为证批不下来,以及如何为一个AI医生去批证也是模糊的。AI医生合格的标准是什么?是器械的精密性,还是诊断的正确率?即使是FDA批准的IDx-Dr,在一项使用了900多张图像的临床试验中,检测到视网膜病变的正确率也仅是87%。

归根结底,AI医生能否落地,并不是要思考机器究竟算不算人的哲学问题,而是行政是否授权的问题。在医疗领域,一个产品的落地,必定包括许可证、医学严谨性的问题,聘用一个独立的AI医生,这可能还有比较长远的路要走。

2.“售后”服务不好办

在现实生活中,病人碰上了医生误诊,可以要求医院赔偿或者处分该医生;医生给你看病,5个里面治好3个可能就差不多了。然而AI给你看病,可能100个里就错了1个,那唯一被看错的那个会怎么想?遇到水平不够好的医生,还能自嘲一句“遇人不淑”,遇到误诊的AI呢,恐怕就没那么宽容了。

首先,追责医院和厂家肯定少不了。然后呢,要怎么办?“罪魁祸首”AI还没有受到任何处理呢。

销毁掉这个AI医生吗?或者把这个AI医生的“头脑”格式化,以示惩罚?但是,一把抹灭它看对了99个病人的功劳似乎不妥。而且,在医学方面,随着电子病历和数字胶片的积累,大量结构化病例被用于机器学习,对于AI医生,这个模型训练的大数据至少是以10万份为起点。

AI是一种集体交付的结果,从程序、算法的开发到机械安装,处理掉一个AI医生的成本是难以计算的。假设病人家属一时气愤,怒摔机器,恐怕还会收到一笔昂贵的赔付账单。所以,如果AI出错,权责可以由医院和公司来承担,但对于这台“犯错”了的机器,要如何处置才能平息病人的怒火呢?

3.AI医生让“患者”变为“消费者”

医疗行业有个特点:核心服务由单个专业技术人员提供。到医院看病我们关心哪个医生出诊,会去比较这个医生的口碑如何,服务地点和所在机构在很大程度上也会影响我们的评价,医院的品牌会引导患者的就医决策。三甲医院的医生和二甲医院的医生你更倾向选谁做主治医生呢?

一旦拥有了自主的AI医生,AI不再像高科技的医疗设备作为医院宣传的噱头,以及提升医生效率的工具,而是进入独立诊断,成为一个“专业人员”。虽然核心服务依旧由单个专业技术人员提供,但服务地点和医疗机构似乎不那么重要了,创新者的话语权将会更大,引导患者就医方向的将会是产出这个AI医生的公司。如此,患者的身份会更贴近“消费者”。代入消费者后,医患关系也会变得冰冷。

医学AI或许比医疗AI更靠谱

其实比起越来越火的智能医疗,医学AI可能更符合当今社会的发展。我们要明确,医学和医疗其实是两个概念,医学是科学,而医疗是以医学科学为基础的实践技术。

所以,在未来,像人工智能、大数据这样的新技术将会带动整个医学科学的进步。但是医疗尤其是自主的AI医生涉及到“一线”操作,人命关天,其发展可能不会像我们想象的那么快。因为不论如何,医疗还是应该以安全、成熟、稳定作为前提。

对于科学来讲,高质量的数据是发展的宝贵引擎。而医疗健康行业、医药研发行业则是一座数据的金矿,医学AI是很好的研究方向、发展方向,更多的科研领域会快速有成果出来,这些也会有更好的商业机会。

据麦肯锡估计,制药和医学方面的大数据和机器学习每年可以产生高达1000亿美元的价值。这些价值来源于:更好的决策,优化创新,提高研究/临床试验的效率,以及为医生,病人和医疗机构创造新的诊疗手段等等。

比如IBM沃森研究中心肿瘤学部门和斯隆凯特林纪念医院在个性化医学的研究,他们致力于使用患者医疗信息和诊疗历史来选择最优治疗方案。除此之外。还有许多公司也致力于研究此类产品。

来源:前瞻经济学人

前谷歌CEO施密特曾说过,“计算机确实可以在分析很多有用信息方面发挥作用,比如预测疾病的结果。但如果自己生病了,仍然想要由一个人来负责,会找医生来看病,不过医生需要掌握最新的医疗技术来帮助做决定。”

本质上,人工智能的概念是增强人类的智能。正如蒸汽机节省人类的体能,电话加强了人类之间的联系,计算机强化了人类的计算能力,机器的协助并没有取代人类的活动,它只是扩展了人的技能和专业水平。

所以,就医疗AI而言,一个独立的AI医生或许比不上一个起辅助作用的虚拟助手。如果智能医疗的创新站在医生一边,为医生赋能,创新成功的概率会大大增加。因为这样能给医生带来实在好处,医生也会积极主动的去配合。但如果将AI医生放进医院,医生只会觉得自己的职业受到了威胁,主动性恐怕也高不到哪里去。

图片来源:前瞻经济学人

而从目前趋势来看,恐怕也没有多少企业想要打造出一个独立的机器人医生。正如很多新闻报道的那样,人工智能现在能够帮助建立患者病历,节省了医生的时间,还有,人工智能还可分析X光片和CT,不过诊断和开药还是只能由医生完成。

即使目前很多巨头都在努力,谷歌在近日也推出了一款AI+AR的肿瘤诊断系统,但我们现在的医疗生态系统依旧是“石器时代”,因为很多系统还不够完善,我们要认清使力的方向,提高医学领域的进步速度,还需要投入更多的AI人才,加速医学领域的AI研究进程。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭