当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 1.神经网络基础 神经网络可以当做是能够拟合任意函数的黑盒子,只要训练数据足够,给定特定的x,就能得到希望的y,结构图如下: 将神经网络模型训练好之后,在输入层给定一个

1.神经网络基础

神经网络可以当做是能够拟合任意函数的黑盒子,只要训练数据足够,给定特定的x,就能得到希望的y,结构图如下:

将神经网络模型训练好之后,在输入层给定一个x,通过网络之后就能够在输出层得到特定的y,那么既然有了这么强大的模型,为什么还需要RNN(循环神经网络)呢?

2.为什么需要RNN(循环神经网络)

他们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的。但是,某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的。

比如,当我们在理解一句话意思时,孤立的理解这句话的每个词是不够的,我们需要处理这些词连接起来的整个序列; 当我们处理视频的时候,我们也不能只单独的去分析每一帧,而要分析这些帧连接起来的整个序列。

以nlp的一个最简单词性标注任务来说,将我 吃 苹果 三个单词标注词性为 我/nn 吃/v 苹果/nn。

那么这个任务的输入就是:

我 吃 苹果 (已经分词好的句子)

这个任务的输出是:

我/nn 吃/v 苹果/nn(词性标注好的句子)

对于这个任务来说,我们当然可以直接用普通的神经网络来做,给网络的训练数据格式了就是我-》 我/nn 这样的多个单独的单词-》词性标注好的单词。

但是很明显,一个句子中,前一个单词其实对于当前单词的词性预测是有很大影响的,比如预测苹果的时候,由于前面的吃是一个动词,那么很显然苹果作为名词的概率就会远大于动词的概率,因为动词后面接名词很常见,而动词后面接动词很少见。

所以为了解决一些这样类似的问题,能够更好的处理序列的信息,RNN就诞生了。

3.RNN结构

首先看一个简单的循环神经网络如,它由输入层、一个隐藏层和一个输出层组成:

不知道初学的同学能够理解这个图吗,反正我刚开始学习的时候是懵逼的,每个结点到底代表的是一个值的输入,还是说一层的向量结点集合,如何隐藏层又可以连接到自己,等等这些疑惑~这个图是一个比较抽象的图。

我们现在这样来理解,如果把上面有W的那个带箭头的圈去掉,它就变成了最普通的全连接神经网络。

x是一个向量,它表示输入层的值(这里面没有画出来表示神经元节点的圆圈);s是一个向量,它表示隐藏层的值(这里隐藏层面画了一个节点,你也可以想象这一层其实是多个节点,节点数与向量s的维度相同);

U是输入层到隐藏层的权重矩阵,o也是一个向量,它表示输出层的值;V是隐藏层到输出层的权重矩阵。

那么,现在我们来看看W是什么。循环神经网络的隐藏层的值s不仅仅取决于当前这次的输入x,还取决于上一次隐藏层的值s。权重矩阵 W就是隐藏层上一次的值作为这一次的输入的权重。

我们给出这个抽象图对应的具体图:

我们从上图就能够很清楚的看到,上一时刻的隐藏层是如何影响当前时刻的隐藏层的。

如果我们把上面的图展开,循环神经网络也可以画成下面这个样子:

现在看上去就比较清楚了,这个网络在t时刻接收到输入 之后,隐藏层的值是 ,输出值是 。关键一点是, 的值不仅仅取决于 ,还取决于 。我们可以用下面的公式来表示循环神经网络的计算方法:

用公式表示如下:

4.总结

好了,到这里大概讲解了RNN最基本的几个知识点,能够帮助大家直观的感受RNN和了解为什么需要RNN,后续总结它的反向求导知识点。

最后给出RNN的总括图:

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭