AI大咖关注的类脑芯片能否超越人脑?又是否可以冲破摩尔定律
扫描二维码
随时随地手机看文章
据悉,AI领域的大咖都在关注搞类脑芯片的研究,相比于传统芯片,类脑芯片的确在功耗上具有绝对优势,研究员试图通过模拟人脑运转机制,使机器超越人脑。据报道随着技术的进步,颠覆传统架构的类脑芯片已为芯片行业开启了一扇新的大门。
最近,在AI领域无论是学术界的大咖还是行业的大佬,都在如火如荼的搞类脑芯片的研究,当然也取得了不少成果。日前,斯坦福大学研究院电子与微系统技术实验室的Jeehwan Kim教授在《自然》杂志上发表了一篇论文,一时间引来了产学研三界的关注。原因是Jeehwan Kim教授与研究员们使用一种称为硅锗的材料研发了一款人工突触芯片,可支持识别手写字体的机器学习算法。无独有偶,近日中国科学院自动化研究所类脑智能研究中心类脑信息处理(BRAVE)研究组也在借鉴生物神经结构的神经网络建模与类人学习研究中取得了突破性的研究。
从计算机诞生起,人们就不断要求它的计算能力提升,随着芯片集成性越来越高,CPU与内存之间的性能差距越来越大。基于冯诺依曼结构的计算机结构呈现的缺点也愈加明显,也有人称这为内存墙,意思是说CPU再快,也要等内存。相比之下,人脑却没有此类问题出现,据研究表明,人类大脑平均每秒可执行 1 亿亿次操作,所需能量只有 10~25 瓦特。因而研究员们正转向模拟人类大脑研究,试图通过模拟人脑运转机制,使计算机能低能耗高功效地进行计算,甚至使计算机优于类人的智能。
国内外有许多公司和机构正在类脑芯片研发上投入大量精力,美国在此项研究上开始较早,2014年IBM就推出了业内首款类脑芯片TrueNorth。国内最近几年在芯片研发上也不甘示弱,也有西井科技这样的初创公司投身到类脑芯片的研发中来,清华等知名高校也纷纷建立类脑研究中心。
相比于传统芯片,类脑芯片的确在功耗上具有绝对优势,拿英特尔在本次CES上展出的自我学习芯片Loihi来说,不仅其学习效率比其他智能芯片高100万倍,而且在完成同一个任务所消耗的能源比传统芯片节省近1000倍。类脑芯片的集成度也非常高,拿浙大推出的“达尔文”芯片来说,其面积为25平方毫米,也就是说边长只有0.5厘米,但内部却能包含500万个晶体管。随着行业对计算力要求越来越高,冯氏瓶颈将越来越明显,颠覆传统架构的类脑芯片已为芯片行业开启了一扇新的大门。
一、传统芯片遇冯·诺依曼瓶颈 模拟神经元成新思路现代计算机基本都基于冯·诺依曼结构,它将程序和处理该程序的数据用同样的方式分别存储在两个区域,一个称为指令集,一个称为数据集。计算机每次进行运算时需要在CPU和内存这两个区域往复调用,因而在双方之间产生数据流量。而随着深度学习算法的出现,对芯片计算力的要求不断提高,冯·诺伊曼瓶颈遇见明显:当CPU需要在巨大的资料上执行一些简单指令时,资料流量将严重降低整体效率,CPU将会在资料输入或输出时闲置。
不仅如此,传统芯片还存在一个大问题就是效率低。芯片在工作时,大部分的电能将转化为热能,一个不带散热器的计算机,其CPU产生的热量就可在短时间内将其自身融化。其他的智能化设备,也因芯片复杂耗能太高,导致续航能力差,不管如何改善工艺,高温和漏电都是难以避免的问题。
为了解决CPU在大量数据运算效率低能耗高的问题,目前有两种发展路线:一是延用传统冯诺依曼架构,主要以3中类型芯片为代表:GPU、FPGA、ASIC;二是采用人脑神经元结构设计芯片来提升计算能力,已完全拟人化为目标,追求在芯片架构上不断逼近人脑,这类芯片被称为类脑芯片。
人脑神经元在接受到刺激后,其细胞膜内外带电离子分布将发生变化,因而形成电位差,电位差将沿着神经细胞轴突、树突双向传导,形成脉冲电流。而当该电信号传递到突触时,突触前神经元将释放神经递质(如多巴胺、肾上腺素)由突触后神经元接受神经递质产生兴奋(该过程单向传递),并向下传递作用与人体反应器并发生反应。
类脑芯片架构就是模拟人脑的神经突触传递结构。众多的处理器类似于神经元,通讯系统类似于神经纤维,每个神经元的计算都是在本地进行的,从整体上看神经元们分布式进行工作的,也就是说整体任务进行了分工,每个神经元只负责一部分计算。在处理海量数据上这种方式优势明显,并且功耗比传统芯片更低。比如IBM的TrueNorth芯片每平方厘米功耗消耗仅为20毫瓦。