当前位置:首页 > 芯闻号 > 技术解析
[导读]为增进大家对pytorch的了解,本文将对pytorch的简单知识加以讲解。如果你对本文内容具有兴趣,不妨继续往下阅读哦。

Pytorch作为深度学习库,常被使用。原因在于,pytorch代码更为简单。不管是深度学习新手还是老手,pytorch都是一大利器。为增进大家对pytorch的了解,本文将对pytorch的简单知识加以讲解。如果你对本文内容具有兴趣,不妨继续往下阅读哦。

1. overview

不同于 theano,tensorflow 等低层程序库,或者 keras、sonnet 等高层 wrapper,pytorch 是一种自成体系的深度学习库(图1)。

图1. 几种深度学习程序库对比

如图2所示,pytorch 由低层到上层主要有三大块功能模块。

图2. pytorch 主要功能模块

1.1 张量计算引擎(tensor computaTIon)

Tensor 计算引擎,类似 numpy 和 matlab,基本对象是tensor(类比 numpy 中的 ndarray 或 matlab 中的 array)。除提供基于 CPU 的常用操作的实现外,pytorch 还提供了高效的 GPU 实现,这对于深度学习至关重要。

1.2 自动求导机制(autograd)

由于深度学习模型日趋复杂,因此,对自动求导的支持对于学习框架变得必不可少。pytorch 采用了动态求导机制,使用类似方法的框架包括: chainer,dynet。作为对比,theano,tensorflow 采用静态自动求导机制。

1.3 神经网络的高层库(NN)

pytorch 还提供了高层的。对于常用的网络结构,如全连接、卷积、RNN 等。同时,pytorch 还提供了常用的、opTImizer 及参数。

这里,我们重点关注如何自定义神经网络结构。

2. 自定义 Module

图3. pytorch Module

module 是 pytorch 组织神经网络的基本方式。Module 包含了模型的参数以及计算逻辑。FuncTIon 承载了实际的功能,定义了前向和后向的计算逻辑。

下面以最简单的 MLP 网络结构为例,介绍下如何实现自定义网络结构。完整代码可以参见repo。

2.1 FuncTIon

Function 是 pytorch 自动求导机制的核心类。Function 是无参数或者说无状态的,它只负责接收输入,返回相应的输出;对于反向,它接收输出相应的梯度,返回输入相应的梯度。

这里我们只关注如何自定义 Function。Function 的定义见。下面是简化的代码段:

class Function(object):

def forward(self, *input):

raise NotImplementedError

def backward(self, *grad_output):

raise NotImplementedError

forward 和 backward 的输入和输出都是 Tensor 对象。

Function 对象是 callable 的,即可以通过()的方式进行调用。其中调用的输入和输出都为 Variable 对象。下面的示例了如何实现一个 ReLU 激活函数并进行调用:

import torch

from torch.autograd import Function

class ReLUF(Function):

def forward(self, input):

self.save_for_backward(input)

output = input.clamp(min=0)

return output

def backward(self, output_grad):

input = self.to_save[0]

input_grad = output_grad.clone()

input_grad[input < 0] = 0

return input_grad

## Test

if __name__ == "__main__":

from torch.autograd import Variable

torch.manual_seed(1111)

a = torch.randn(2, 3)

va = Variable(a, requires_grad=True)

vb = ReLUF()(va)

print va.data, vb.data

vb.backward(torch.ones(va.size()))

print vb.grad.data, va.grad.data

如果 backward 中需要用到 forward 的输入,需要在 forward 中显式的保存需要的输入。在上面的代码中,forward 利用self.save_for_backward函数,将输入暂时保存,并在 backward 中利用saved_tensors (python tuple 对象) 取出。

显然,forward 的输入应该和 backward 的输入相对应;同时,forward 的输出应该和 backward 的输入相匹配。

由于 Function 可能需要暂存 input tensor,因此,建议不复用 Function 对象,以避免遇到内存提前释放的问题。如所示,forward的每次调用都重新生成一个 ReLUF 对象,而不能在初始化时生成在 forward 中反复调用。

2.2 Module

类似于 Function,Module 对象也是 callable 是,输入和输出也是 Variable。不同的是,Module 是[可以]有参数的。Module 包含两个主要部分:参数及计算逻辑(Function 调用)。由于ReLU激活函数没有参数,这里我们以最基本的全连接层为例来说明如何自定义Module。

全连接层的运算逻辑定义如下 Function:

import torch

from torch.autograd import Function

class LinearF(Function):

def forward(self, input, weight, bias=None):

self.save_for_backward(input, weight, bias)

output = torch.mm(input, weight.t())

if bias is not None:

output += bias.unsqueeze(0).expand_as(output)

return output

def backward(self, grad_output):

input, weight, bias = self.saved_tensors

grad_input = grad_weight = grad_bias = None

if self.needs_input_grad[0]:

grad_input = torch.mm(grad_output, weight)

if self.needs_input_grad[1]:

grad_weight = torch.mm(grad_output.t(), input)

if bias is not None and self.needs_input_grad[2]:

grad_bias = grad_output.sum(0).squeeze(0)

if bias is not None:

return grad_input, grad_weight, grad_bias

else:

return grad_input, grad_weight

为一个元素为 bool 型的 tuple,长度与 forward 的参数数量相同,用来标识各个输入是否输入计算梯度;对于无需梯度的输入,可以减少不必要的计算。

Function(此处为 LinearF) 定义了基本的计算逻辑,Module 只需要在初始化时为参数分配内存空间,并在计算时,将参数传递给相应的 Function 对象。代码如下:

import torch

import torch.nn as nn

class Linear(nn.Module):

def __init__(self, in_features, out_features, bias=True):

super(Linear, self).__init__()

self.in_features = in_features

self.out_features = out_features

self.weight = nn.Parameter(torch.Tensor(out_features, in_features))

if bias:

self.bias = nn.Parameter(torch.Tensor(out_features))

else:

self.register_parameter('bias', None)

def forward(self, input):

return LinearF()(input, self.weight, self.bias)

需要注意的是,参数是内存空间由 tensor 对象维护,但 tensor 需要包装为一个Parameter 对象。Parameter 是 Variable 的特殊子类,仅有是不同是 Parameter 默认requires_grad为 True。Varaible 是自动求导机制的核心类,此处暂不介绍,参见。

3. 自定义循环神经网络(RNN)

我们尝试自己定义一个更复杂的 Module ——RNN。这里,我们只定义最基础的 vanilla RNN(图4),基本的计算公式如下:

ht=relu(W⋅x+U⋅ht−1)

图4. RNN

更复杂的 LSTM、GRU 或者其他变种的实现也非常类似。

3.1 定义 Cell

import torch

from torch.nn import Module, Parameter

class RNNCell(Module):

def __init__(self, input_size, hidden_size):

super(RNNCell, self).__init__()

self.input_size = input_size

self.hidden_size = hidden_size

self.weight_ih = Parameter(torch.Tensor(hidden_size, input_size))

self.weight_hh = Parameter(torch.Tensor(hidden_size, hidden_size))

self.bias_ih = Parameter(torch.Tensor(hidden_size))

self.bias_hh = Parameter(torch.Tensor(hidden_size))

self.reset_parameters()

def reset_parameters(self):

stdv = 1.0 / math.sqrt(self.hidden_size)

for weight in self.parameters():

weight.data.uniform_(-stdv, stdv)

def forward(self, input, h):

output = LinearF()(input, self.weight_ih, self.bias_ih) + LinearF()(h, self.weight_hh, self.bias_hh)

output = ReLUF()(output)

return output

3.2 定义完整的 RNN

import torch

from torch.nn import Module

class RNN(Moudule):

def __init__(self, input_size, hidden_size):

super(RNN, self).__init__()

self.input_size = input_size

self.hidden_size = hidden_size

sef.cell = RNNCell(input_size, hidden_size)

def forward(self, inputs, initial_state):

time_steps = inputs.size(1)

state = initial_state

outputs = []

for t in range(time_steps):

state = self.cell(inputs[:, t, :], state)

outputs.append(state)

return outputs

讨论

pytorch 的 Module 结构是传承自 torch,这一点也同样被 keras (functional API)所借鉴。 在 caffe 等一些[早期的]深度学习框架中,network 是由于若干 layer ,经由不同的拓扑结构组成的。而在 (pyt)torch 中没有 layer 和 network 是区分,一切都是 callable 的 Module。Module 的调用的输入和输出都是 tensor (由 Variable 封装),用户可以非常自然的构造任意有向无环的网络结构(DAG)。

同时, pytorch 的 autograd 机制封装的比较浅,可以比较容易的定制反传或修改梯度。这对有些算法是非常重要。

总之,仅就自定义算法而言,pytorch 是一个非常优雅的深度学习框架。

以上便是此次小编带来的“pytorch”相关内容,通过本文,希望大家对上述知识具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭