Python的几个自然语言处理工具介绍
扫描二维码
随时随地手机看文章
Python以其清晰简洁的语法、易用和可扩展性以及丰富庞大的库深受广大开发者喜爱。其内置的非常强大的机器学习代码库和数学库,使Python理所当然成为自然语言处理的开发利器。
那么使用Python进行自然语言处理,要是不知道这几个工具就真的Out了。
Python 的几个自然语言处理工具NLTK是使用Python处理语言数据的领先平台。它为像WordNet这样的词汇资源提供了简便易用的界面。它还具有为文本分类(classificaTIon)、文本标记(tokenizaTIon)、词干提取(stemming)、词性标记(tagging)、语义分析(parsing)和语义推理(semanTIc reasoning)准备的文本处理库。
NLTK:NLTK 在用 Python 处理自然语言的工具中处于领先的地位。它提供了 WordNet 这种方便处理词汇资源的借口,还有分类、分词、除茎、标注、语法分析、语义推理等类库。
Pattern:Pattern 的自然语言处理工具有词性标注工具(Part-Of-Speech Tagger),N元搜索(n-gram search),情感分析(senTIment analysis),WordNet。支持机器学习的向量空间模型,聚类,向量机。
TextBlob:TextBlob 是一个处理文本数据的 Python 库。提供了一些简单的api解决一些自然语言处理的任务,例如词性标注、名词短语抽取、情感分析、分类、翻译等等。
Gensim:Gensim 提供了对大型语料库的主题建模、文件索引、相似度检索的功能。它可以处理大于RAM内存的数据。作者说它是“实现无干预从纯文本语义建模的最强大、最高效、最无障碍的软件。
PyNLPI:它的全称是:Python自然语言处理库(Python Natural Language Processing Library,音发作: pineapple) 这是一个各种自然语言处理任务的集合,PyNLPI可以用来处理N元搜索,计算频率表和分布,建立语言模型。他还可以处理向优先队列这种更加复杂的数据结构,或者像 Beam 搜索这种更加复杂的算法。
spaCy:这是一个商业的开源软件。结合Python和Cython,它的自然语言处理能力达到了工业强度。是速度最快,领域内最先进的自然语言处理工具。
Polyglot:Polyglot 支持对海量文本和多语言的处理。它支持对165种语言的分词,对196中语言的辨识,40种语言的专有名词识别,16种语言的词性标注,136种语言的情感分析,137种语言的嵌入,135种语言的形态分析,以及69中语言的翻译。
MontyLingua:MontyLingua 是一个自由的、训练有素的、端到端的英文处理工具。输入原始英文文本到 MontyLingua ,就会得到这段文本的语义解释。适合用来进行信息检索和提取,问题处理,回答问题等任务。从英文文本中,它能提取出主动宾元组,形容词、名词和动词短语,人名、地名、事件,日期和时间,等语义信息。
BLLIP Parser:BLLIP Parser(也叫做Charniak-Johnson parser)是一个集成了产生成分分析和最大熵排序的统计自然语言工具。包括 命令行 和 python接口 。
Quepy:Quepy是一个Python框架,提供将自然语言转换成为数据库查询语言。可以轻松地实现不同类型的自然语言和数据库查询语言的转化。所以,通过Quepy,仅仅修改几行代码,就可以实现你自己的自然语言查询数据库系统。GitHub:https://github.com/machinalis/quepy
HanNLP:HanLP是由一系列模型与算法组成的Java工具包,目标是普及自然语言处理在生产环境中的应用。不仅仅是分词,而是提供词法分析、句法分析、语义理解等完备的功能。HanLP具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。文档使用操作说明:Python调用自然语言处理包HanLP 和 菜鸟如何调用HanNLP