机器学习分类算法中必须要懂的四种算法
扫描二维码
随时随地手机看文章
本文主要介绍了 4 种应用比较普遍的的机器学习算法,但是机器学习算法还有其他很多不同的算法,大家感兴趣的可以自己去了解。
朴素贝叶斯分类朴素贝叶斯分类是基于贝叶斯定理与特征条件独立假设的分类方法,发源于古典数学理论,拥有稳定的数学基础和分类效率。它是一种十分简单的分类算法,当然简单并不一定不好用。通过对给出的待分类项求解各项类别的出现概率大小,来判断此待分类项属于哪个类别,而在没有多余条件的情况下,朴素贝叶斯分类会选择在已知条件下,概率最大的类别。
贝叶斯分类算法的实质就是计算条件概率的公式。在事件 B 发生的条件下,事件 A 发生的概率为 P(A | B)来表示。
P(A | B)的概率为
。在日常应用中,我们经常可以直接得出 P(A | B),而 P(B | A)直接得到比较困难,通过贝叶斯定理就可以通过 P(A | B)获得 P(B | A)。
而朴素贝叶斯分类的正式定义则如下:
朴素贝叶斯算法在执行文本分类等工作是会有很好的效果,比如朴素贝叶斯算法常被使用于垃圾邮件的过滤分类中。
SVM算法支持向量机(Support Vector Machine,常简称为 SVM)是一种监督式学习的方法,可广泛地应用于统计分类以及回归分析。支持向量机属于一般化线性分类器,它能够同时最小化经验误差与最大化几何边缘区,因此支持向量机也被称为最大边缘区分类器。
同时支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面,分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。
SVM 算法虽然存在难以训练和难以解释的问题,但是在非线性可分问题上的表现十分优秀,在非线性可分问题中常选择 SVM 算法。
基于 KNN 的算法K - 近邻算法,简称 KNN(k-Nearest Neighbor),它同样是一个比较简单的分类、预测算法。对选取与待分类、待预测数据的最相似的 K 个训练数据,通过对这 K 个数据的结果或者分类标号取平均、取众数等方法得到待分类、待预测数据的结果或者分类标号。
K - 近邻算法如上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。在不知道中间那个绿色的数据是从属于哪一类(蓝色小正方形or红色小三角形)的情况下,我们可以从它的临近的样本进行判断。
如果 K=3,绿色圆点最近的 3 个邻居是 2 个红色小三角形和 1 个蓝色小正方形,少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。
如果 K=5,绿色圆点的最近的 5 个邻居是 2 个红色三角形和 3 个蓝色的正方形,还是少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于蓝色的正方形一类。
从上文我们看到,当无法判定当前待分类点是从属于已知分类中的哪一类时,可以依据统计学的理论看它所处的位置特征,衡量它周围邻居的权重,而把它归为(或分配)到权重更大的那一类,这就是 K 近邻算法的核心思想。