当前位置:首页 > 智能硬件 > 人工智能AI
[导读]   如今人工智能被人高度的吹捧,认为是无所不能,特别是在寻找投资方面能力超出了人类,有人将人工智能和巴菲特进行PK,谁会赢呢?巴菲特对此事尚未置评,但我们可以看出AI的局限性开始凸显出来。

  如今人工智能被人高度的吹捧,认为是无所不能,特别是在寻找投资方面能力超出了人类,有人将人工智能和巴菲特进行PK,谁会赢呢?巴菲特对此事尚未置评,但我们可以看出AI的局限性开始凸显出来。

  工智能(AI)在寻找投资机会方面的能力超出了人类,但它也有明显的局限性。以下为原文内容:

  大型并购通常不利于买方的股东,这是巴菲特多年来在交易中坚持的一个原则。伦敦对冲基金温顿(Winton)设计了一个AI来测试这个原则,为此,研究人员收集并分析了美国1960年代以来的近9000宗交易的数据。

  测试结果是:巴菲特这个原则站不住脚,大型并购案本身并不会造成价值损失。

  巴菲特对此事尚未置评。

  AI有多大的潜力?

  温顿是一个300亿美元的对冲基金,它有一个数据科学家团队,其主管丹尼尔o米切尔(Daniel Mitchell)表示:“这个测试防止了我们在虚假信号下进行交易,避免了资金损失。”

  虽然在过去几十年里出现过很多次雷声大雨点小的情况,但现在,AI它正在一步一步地占领投资界。将AI作为基石战略或研究工具的公司不仅有Two Sigma和高盛这样的巨头,也有Schonfeld Strategic Advisors这样的小公司。

  曼氏集团首席执行官卢克o埃利斯(Luke Ellis)认为,AI将慢慢占据投资界。该公司已经利用机器学习在几个对冲基金上投资了大约130亿美元。埃利斯在接受采访时表示,10年后,AI将涉足该公司的所有活动,不管是执行交易,还是帮助挑选证券。

  “如果计算能力和数据量以目前的速度持续增长,那么机器学习可能会在25年内涉足99%的投资管理。”埃利斯说:“它将参与我们生活的方方面面。我不认为机器学习无所不能。但是它可以帮助我们把很多事情做得更好。”

  AI 将改变工作的性质

  全球有30万人在从事资产管理工作(包括基金经理、分析师和后台工作人员),Opimas咨询公司对金融公司进行调查后发现,到2025年,AI将会导致这个数字减少9万人。

  除了曼氏集团和温顿这样的量化先驱者,其他所有公司几乎都面临着困难。

  只有少数科学家可以设计出能盈利的策略。投资者很难掌握这种能力,所以一些人保持观望态度。而且这种技术和数据的高昂成本也已经让一些公司承受了费用压力。

  但机器学习在寻找投资机会方面的能力超出了人类水平,让人无法无视这项技术。一些企业现在使用AI梳理社交媒体和智能手机上的凌乱数据,快速(比分析师快)预测收益和销售额,从文档中解读高管的情绪,以及制定整个策略。

  瓦森特o达哈(Vasant Dhar)在20年前创立了首批机器学习对冲基金之一,他说:“发现机会这样简单的事情将更多地由机器去做。它们可以产生假设,测试假设,然后告诉人类:‘这个机会很有趣,要深入挖掘,’机器可以增添价值,它改变了人类工作的性质。”

  AI的局限性

  虽然AI很强大,但它的局限性也很明显。AI缺乏想像力,缺乏人类预见事件的能力(不管是政治事件还是宏观经济事件)除非这种事件之前发生过很多次。比如,对冲基金经理约翰o保尔森(John Paulson)预见到次贷危机即将到来,但人工智能就完全预见不到,因为它没有足够的相关历史数据进行比较,无法形成意见。

  瓦森特o达哈也是纽约大学数据科学和商务学教授,他说:“机器难以预测危机,因为每个危机都是独一无二的。人们擅长解释危机之类的事情,有时还可以预测它,但我们的预测常常是错的。看看过去几年人们对利率的预测就知道了。”

  在AI时代,基金经理和他们对市场的看法将发挥主要作用,无论这些看法是对是错。而基本面分析师面临的威胁就比较大了。

  一些经验丰富的、善于利用大数据的机器学习专家可以从金融公司拿到100万美元的年薪。而那些研究公司基本面的分析师就拿不到太多钱了,他们可能需要学习编程来保住自己的工作。

  一个案例

  下面我们来看看资产管理公司Acadian Asset Management的案例。该公司位于波士顿,在过去五年里资产规模飙升了79%,达到930亿美元。

  经理对经济趋势的直觉是该公司多空策略之类的基础。然后他们部署机器学习来提炼20个最有影响力的因素,其中既包括现金流,也包括欺诈这种不寻常的事件,它们可以推动做出更好的预测。然后这些因素被注入到一个自动化系统中,在几个月或者几个季度内对约1万种不同的股票进行持仓。

  Acadian量化全球宏观研究主管瑞安o斯蒂夫(Ryan Stever)说,公司的经理和分析师是多面手:他们对统计学有很深的理解,而且几乎每个人都会写代码,并且拥有市场经验。

  Acadian正在人工智能和大数据上投资,以便更好地预测一家公司业绩关键指标,比如销售额之类。如果Acadian能在某家公司正式发布销售数据之前就准确估算出数字,这无疑是个很大的优势。

  “使用机器学习,你可以更快、更准确地获得指标。”Acadian的选股研究主管维斯o陈(Wes Chan)表示,“如果确实效果好,这就是件大事了。”

  AI尚未战胜巴菲特

  对于一些公司来说,更大的野心就是搞定深度学习——谷歌搜索和特斯拉公司自动驾驶汽车的背后就是这种人工智能。深度学习机器模仿了我们大脑中多层神经元的活动,对人类指令的需要比较少——它可以发现东西,即使人类不告诉它要找到的是什么东西。

  于尔根o施密德胡伯(Jürgen Schmidhuber)是现代人工智能的奠定者,也为一些对冲基金担任顾问,他说:“你会发现,神经网络将在各种交易中变成更好的预测者和更好的工具。许多交易将通过自学习算法来执行,只需要少量高层人士偶尔输入人类的决定即可。这离我们并不遥远。”

  终究来说,AI的前途将取决于它的赚钱能力。目前也有一些完全自动化的AI策略在运行,它们的业绩一般,比股市不足,比对冲基金有余。数据显示,在截至2016年的六年时间里,13个AI基金平均年回报率为10.6%。

  选股人只要能为投资者带来像样的回报,就不愁没有工作。

  虽然AI推翻了巴菲特的一个选股原则。但是从2011年到2016年,巴菲特的公司平均年回报率是12.5%。机器尚未击败这位传奇投资人。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭