常见的hash算法有哪些及其原理是什么
扫描二维码
随时随地手机看文章
3DES,也称为3DESede或TripleDES,是三重数据加密,且可以逆推的一种算法方案。1975年美国IBM公司成功研究并发布了DES加密算法,但DES密码长度容易被暴力破解,通过对DES算法进行改进,针对每个数据块进行三次DES加密,也就是3DES加密算法。但由于3DES的算法是公开的,所以算法本身没什么秘密可言,主要依靠唯一密钥来确保数据加密解密的安全。
有人可能会问,那3DES到底安不安全呢?!目前为止,还没有人能破解3DES,所以你要是能破解它,都足以震惊整个信息安全界了。
3DES加密算法简析3DES加密算法并非什么新的加密算法,而是DES算法的另一种模式。是现在比较常用的一种对称加密算法,比起DES来说安全性更高。该算法的加解密过程分别是对明文/密文数据进行三次DES加密或解密,得到相应的密文或明文。假设EK()和DK()分别表示DES的加密和解密函数,P表示明文,C表示密文,那么加解密的公式如下:
加密:C = EK3( DK2( EK1(P) ) ) 即对明文数据进行,加密 --》 解密 --》 加密的过程,最后得到密文数据
解密:P = DK1( EK2( DK3(C) ) ) 即对密文数据进行,解密 --》 加密 --》 解密的过程,最后得到明文数据
其中:K1表示3DES中第一个8字节密钥,K2表示第二个8字节密钥,K3表示第三个8字节密钥,通常情况下,3DES的密钥为双倍长密钥(若不知道双倍长,可参考博主的密钥分算算法文章中的解释),即K1对应KL(左8字节),K2对应KR(右8字节),K3对应KL(左8字节)。
由于DES加解密算法是每8个字节作为一个加解密数据块,因此在实现该算法时,需要对数据进行分块和补位(即最后不足8字节时,要补足8字节)。Java本身提供的API中NoPadding,Zeros填充和PKCS5Padding。假设我们要对9个字节长度的数据进行加密,则其对应的填充说明如下:
ZerosPadding
无数据的字节全部被填充为0
第一块:F0 F1 F2 F3 F4 F5 F6 F7
第二块:F8 0 0 0 0 0 0 0
PKCS5Padding
每个被填充的字节都记录了被填充的长度
第一块:F0 F1 F2 F3 F4 F5 F6 F7
第二块:F8 07 07 07 07 07 07 07
DES的具体算法过程很复杂,实话说我也不懂,我只能借用Android和iOS里面自带的API去实现3DES的过程,其具体代码如下:
Android代码
[plain] view plain copypublic byte[] triDesEncrypt(byte[] desKey, byte[] desData, int flag) {//flag == 1为加密,flag == 0为解密
byte[] keyFirst8 = new byte[8];
byte[] keySecond8 = new byte[8];
if (desKey.length 》 8) {
for (int i = 0; i 《 8; i++) {
keyFirst8[i] = desKey[i];
}
} else {
return null;
}
if (desKey.length 《 16) {
for (int i = 0; i 《 desKey.length - 8; i++) {
keySecond8[i] = desKey[i + 8];
}
} else {
for (int i = 0; i 《 8; i++) {
keySecond8[i] = desKey[i + 8];
}
}
byte[] tmpKey = new byte[8];
byte[] tmpData = new byte[8];
arrayCopy(keyFirst8, 0, tmpKey, 0, 8);
arrayCopy(desData, 0, tmpData, 0, 8);
int mode = flag;
byte[] result = unitDes(tmpKey, tmpData, mode);
arrayCopy(keySecond8, 0, tmpKey, 0, 8);
arrayCopy(result, 0, tmpData, 0, 8);
mode = (mode == 1) ? 0 : 1;
result = unitDes(tmpKey, tmpData, mode);
arrayCopy(keyFirst8, 0, tmpKey, 0, 8);
arrayCopy(result, 0, tmpData, 0, 8);
mode = (mode == 1) ? 0 : 1;
result = unitDes(tmpKey, tmpData, mode);
return result;
}
iOS代码
[plain] view plain copy+ (NSData *)encryptWithDataKey:(NSData *)src key1:(NSData *)key1 key2:(NSData *)key2 key3:(NSData *)key3
{
if (src == nil || [src length] == 0 ||
key1 == nil || [key1 length] == 0 ||
key2 == nil || [key2 length] == 0 ||
key3 == nil || [key3 length] == 0) {
return nil;
}
const void *vplainText;
size_t plainTextBufferSize;
plainTextBufferSize = [src length];
vplainText = [src bytes];
CCCryptorStatus ccStatus;
uint8_t *bufferPtr = NULL;
size_t bufferPtrSize = 0;
size_t movedBytes = 0;
bufferPtrSize = (plainTextBufferSize + kCCBlockSize3DES) & ~(kCCBlockSize3DES - 1);
bufferPtr = malloc(bufferPtrSize * sizeof(uint8_t));
memset((void *)bufferPtr, 0x00, bufferPtrSize);
NSMutableData *key = [NSMutableData data];
[key appendData:key1];
[key appendData:key2];
[key appendData:key3];
NSString *initVec = @“01234567”;
const void *vKey = [key bytes];
const void *vinitVec = (const void *)[initVec UTF8String];
uint8_t iv[kCCBlockSize3DES];
memset((void *)iv, 0x00, (size_t)sizeof(iv));
ccStatus = CCCrypt(kCCEncrypt, kCCAlgorithm3DES, kCCOpTIonPKCS7Padding | kCCOpTIonECBMode, vKey, kCCKeySize3DES, vinitVec, vplainText, plainTextBufferSize, (void *)bufferPtr, bufferPtrSize, &movedBytes);
if (ccStatus != kCCSuccess) {
free(bufferPtr);
return nil;
}
NSData *result = [NSData dataWithBytes:bufferPtr length:movedBytes];
free(bufferPtr);
return result;
}
+ (NSData *)decryptWithDataKey:(NSData *)src key1:(NSData *)key1 key2:(NSData *)key2 key3:(NSData *)key3
{
if (src == nil || [src length] == 0 ||
key1 == nil || [key1 length] == 0 ||
key2 == nil || [key2 length] == 0 ||
key3 == nil || [key3 length] == 0) {
return nil;
}
const void *vplainText;
size_t plainTextBufferSize;
plainTextBufferSize = [src length];
vplainText = [src bytes];
CCCryptorStatus ccStatus;
uint8_t *bufferPtr = NULL;
size_t bufferPtrSize = 0;
size_t movedBytes = 0;
bufferPtrSize = (plainTextBufferSize + kCCBlockSize3DES) & ~(kCCBlockSize3DES - 1);
bufferPtr = malloc(bufferPtrSize * sizeof(uint8_t));
memset((void *)bufferPtr, 0x00, bufferPtrSize);
NSMutableData *key = [NSMutableData data];
[key appendData:key1];
[key appendData:key2];
[key appendData:key3];
NSString *initVec = @“01234567”;
const void *vkey = [key bytes];
const void *vinitVec = (const void *)[initVec UTF8String];
uint8_t iv[kCCBlockSize3DES];
memset((void *)iv, 0x00, (size_t)sizeof(iv));
ccStatus = CCCrypt(kCCDecrypt, kCCAlgorithm3DES, kCCOpTIonPKCS7Padding | kCCOpTIonECBMode, vkey, kCCKeySize3DES, vinitVec, vplainText, plainTextBufferSize, (void *)bufferPtr, bufferPtrSize, &movedBytes);
if (ccStatus != kCCSuccess) {
free(bufferPtr);
return nil;
}
NSData *result = [NSData dataWithBytes:bufferPtr length:movedBytes];
free(bufferPtr);
return result;
}