当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 一、激活函数(AcTIvaTIon FuncTIon) 为了让神经网络能够学习复杂的决策边界(decision boundary),我们在其一些层应用一个非线性激活函数。常用的函数有si

一、激活函数(AcTIvaTIon FuncTIon)

为了让神经网络能够学习复杂的决策边界(decision boundary),我们在其一些层应用一个非线性激活函数。常用的函数有sigmoid、tanh、ReLU(RecTIfied Linear Unit 线性修正单元)和以及这些函数的变体。

二、Adadelta

Adadelta 是基于梯度下降的学习算法,可以随时间调整每个参数的学习率,它比超参数(hyperparameter)更敏感而且可能会降低学习率。Adadelta 类似于 rmsprop,而且可被用来替代 vanilla SGD。

论文:Adadelta:一种自适应学习率方法

三、Adagrad

Adagrad 是一种自适应学习率算法,能够随时间跟踪平方梯度并自动适应每个参数的学习率。它可被用来替代vanillaSGD (#sgd),稀疏数据上更是特别有用,可以将更高的学习率分配给更新不频繁的参数。

论文:用于在线学习和随机优化的自适应次梯度方法

四、Adam

Adam 是类似于 rmsprop 的自适应学习率算法,它通过使用梯度的第一和第二时刻的运行平均值(running average)直接估计,并具有偏差校正功能。

论文:Adam:一种随机优化方法

五、仿射层(Affine Layer)

这是神经网络中的一个全连接层。仿射(Affine)的意思是前面一层中的每一个神经元都连接到当前层中的每一个神经元。在许多方面,这是神经网络的「标准」层。仿射层通常被加在卷积神经网络或循环神经网络做出最终预测前顶层。仿射层的一般形式为 y = f(Wx + b),其中 x 是层输入,w 是参数,b 是一个偏差矢量,f 是一个非线性激活函数。

六、注意机制(Attention Mechanism)

注意机制由人类视觉注意所启发,是一种关注图像中特定部分的能力。注意机制可被整合到语言处理和图像识别的架构中,以帮助网络学习在做出预测时应该「关注」什么。

七、Alexnet

Alexnet 是一种卷积神经网络架构的名字,这种架构曾在 2012 年 ILSVRC 挑战赛中以巨大优势获胜,它使导致人们重新关注对用于图像识别的卷积神经网络(CNN)。它由 5 个卷积层组成。其中一些后面跟随着最大池化(max-pooling)层和带有最终 1000 条路径的 softmax (1000-way softmax)的 3个全连接层。Alexnet 被引入到了使用深度卷积神经网络的 ImageNet 分类中。

八、自编码器(Autoencoder)

自编码器是一种神经网络模型,它的目标是预测输入自身,这通常通过网络中某个地方的「瓶颈(bottleneck)」实现。通过引入瓶颈,使得网络学习输入更低维度的表征,从而将输入压缩成一个好的表征。自编码器和 PCA 等降维技术相关,但因为它们的非线性本质,它们可以学习更为复杂的映射。目前已有一些范围涵盖较广的自编码器存在,包括降噪自编码器(Denoising Autoencoders)、变自编码器(VariationalAutoencoders)和序列自编码器(Sequence Autoencoders)。

降噪自编码器论文:

Stacked Denoising Autoencoders: Learning Useful Representationsin a Deep Network with a Local Denoising Criterion

变自编码器论文:

Auto-Encoding Variational Bayes

序列自编码器论文:

Semi-supervised Sequence Learning

九、平均池化(Average-Pooling)

平均池化是一种在卷积神经网络中用于图像识别的池化(Pooling)技术。它的原理是,在特征的局部区域上滑动窗口(如像素),然后再取窗口中所有值的平均值。它将输入表征压缩成一种更低维度的表征。

十、反向传播(Backpropagation)

反向传播是一种在神经网络中用来有效地计算梯度的算法,或称为前馈计算图(feedforwardcomputational graph)。它可以归结成从网络输出开始应用分化的链式法则,然后向后传播梯度。

论文:

Learning representations by back-propagating errors

十一、通过时间的反向传播BPTT:BackpropagationThrough Time

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭