当前位置:首页 > 模拟技术 > 功放技术
[导读]   现在越来越多的便携式电子产品、家庭影音系统、汽车音响系统采用D类放大器,D类功放具有省电、输出功率大、音质佳、讯号稳定等特点,力水清木华研究报告指出,受音频播放器节能、轻薄短小需求的推动,全

  现在越来越多的便携式电子产品、家庭影音系统、汽车音响系统采用D类放大器,D类功放具有省电、输出功率大、音质佳、讯号稳定等特点,力水清木华研究报告指出,受音频播放器节能、轻薄短小需求的推动,全球D类放大器市场销售将在2012年突破7.5亿美元。即使在金融危机的冲击之下,D类音频放大器的需求热度丝毫未减。

  EMI 噪声对于周围设备和电路的干扰是完全不可预知的。手机中有大量的RF系统,比如通话,收音机等功能。一般来说,对于EMI会要求达到相关规定。印刷电路板、时钟电路、振荡器、数字电路和处理器会成为电路内部 EMI 源。对电流执行开关操作的一些机电装置,在关键操作期间会产生 EMI。这些 EMI 信号不一定会对其他电子设备产生负面影响。EMI 信号的频谱成分和强度,决定了它是否会对敏感型电路产生意想不到的影响。

  对于D类功放来说,减小EMI,主要有两个办法:

  1、对于功放的采样频率采用扩频技术,使得由于采样频率导致的EMI干扰频谱比较平均,达到降低EMI的目的。

  2、控制输出管的开启和关断时间,进而控制边缘的EMI干扰。一般认为第2点是影响D类功放EMI的主要因素。

  对于PWM信号的频谱成分简化为其频率和上升时间。时钟或者系统频率建立电路的时间基准,但其边缘率形成干扰谐波。EMI的能量主要取决于变化时间和变化幅度的大小。电磁干扰(EMI)有两种传播途径:传导和辐射。即电磁干扰分为传导性电磁干扰和辐射性电磁干扰两种。当电磁干扰波的频率小于30MHz时,电磁干扰主要是以传导方式在电子设备中产生传导性噪声;当电磁干扰波的频率高于30MHz时,电磁干扰主要以辐射方式在电子设备中产生辐射噪声。目前通用的EMI标准为FCC和CISPR,主要关注的是30MHz频带内的干扰。

  产生EMI的最大频率和边沿变化时间的关系对应如下式所示,比如当边缘变化时间为10ns的时候,计算得到fmax=31.8MHz,也就是说,系统会受到在31.8MHz内的频率影响。

  D类功放也具有缺点,当D类功放的输出信号为大电流且高速度的脉宽调制开关信号,开关信号藉由喇叭线传递至喇叭时,间接的造成电磁波幅射而产生电磁干扰(EMI)。此EMI干扰含有宽广的频谱,不同的频段干扰不同的接收器,甚至干扰非接收器的电子产品。

  以下是EMI干扰常用的解决方法

  ● 图一为一般FM接收机天线端的接收讯号。当D类功放动作时,其辐射出来的谐波讯号如没有效处理,结果将如图二,谐波讯号覆盖原有的FM讯号,使FM收讯品质下降,甚至无法接收

  

  EMI干扰问题可从辐射及传导两方面着手,阻隔辐射干扰PCB Layout及LC滤波器的选用是有效的处理方向。根据D类功放辐射的频带,调整output LC滤波器的组合,可有效改善FM收讯品质。如图三 : 原图二的干扰现象, 经合适的LC滤波器处理后,可消除D类功放的干扰问题。

  

  经由电源/地线的传导发射也是另一干扰源,除PCB Layout上的隔离,耦合滤波器是该有的选择。

  ● 降低干扰信号的强度也可以。主要是改变干扰频率。缩短D类功放的喇叭线可以降低天线(喇叭线)的发射效率,以降低干扰辐射波的强度。

  降低干扰辐射波强度的方法是使用电感电容滤波器(LC Filter)将D类功放的开关信号滤波而取出其音频信号,再经喇叭线传至喇叭。如此喇叭线的传递信号为音频信号而高频的开关信号已被大幅衰减。由于D类功放在便携式电子产品的应用上其喇叭线的长度相对的短,故可使用磁珠(Bead)针对某些特别高次谐波作滤波,无须使用LC Filter即可达到效果。

  另一降低干扰信号的方法是使用展频的技巧。展频的方式乃将D类功放的高频载波频率随着时间做变更,如此则干扰信号即被分布在某几个频率区而非全部集中在一个频率区。如果高频载波频率平均轮换于10个频率则理论上EMI即可降低10db。

  ● 使用跳频的方法也可以有效避免干扰。如果接收机在接收某个频率时被D类功放

  的高频开关信号所干扰,则可将D类功放的高频开关频率跳至另一频率。由于D类功放的音频内容与其载波或开关频率无关,此种方法并不影响音频信号的内容。只要此开关频率不在接收机的带通滤波器(Bandpass Filter)范围内,接收机即可有效的抑制干扰信号。

  ● 坊间对FM的干扰解决方式采用金属材质的外壳屏蔽,以便衰减谐波辐射的干扰能量,进而使得FM接收正常。但当FM接收机与D类功放结合时, 此屏蔽方式便不适用,须从D类功放的EMI防治着手。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭