当前位置:首页 > 智能硬件 > 人工智能AI
[导读] TD Learning时序差分学习结合了动态规划DP和蒙特卡洛MC方法,且兼具两种算法的优点,是强化学习的核心思想。 虽然蒙特卡罗MC方法仅在最终结果已知时才调整其估计值,但TD Lea

TD Learning时序差分学习结合了动态规划DP和蒙特卡洛MC方法,且兼具两种算法的优点,是强化学习的核心思想。

虽然蒙特卡罗MC方法仅在最终结果已知时才调整其估计值,但TD Learning时序差分学习调整预测以匹配后,更准确地预测最终结果之前的未来预测。

TD Learning算法概念:

TD Learning(Temporal-Difference Learning) 时序差分学习指的是一类无模型的强化学习方法,它是从当前价值函数估计的自举过程中学习的。这些方法从环境中取样,如蒙特卡洛方法,并基于当前估计执行更新,如动态规划方法。

TD Learning算法本质:

TD Learning(Temporal-DifferenceLearning)时序差分学习结合了动态规划和蒙特卡洛方法,是强化学习的核心思想。

时序差分不好理解。改为当时差分学习比较形象一些,表示通过当前的差分数据来学习。

蒙特卡洛MC方法是模拟(或者经历)一段序列或情节,在序列或情节结束后,根据序列或情节上各个状态的价值,来估计状态价值。TD Learning时序差分学习是模拟(或者经历)一段序列或情节,每行动一步(或者几步),根据新状态的价值,然后估计执行前的状态价值。可以认为蒙特卡洛MC方法是最大步数的TD Learning时序差分学习。

TD Learning算法描述:

如果可以计算出策略价值(π状态价值vπ(s),或者行动价值qπ(s,a)),就可以优化策略。

在蒙特卡洛方法中,计算策略的价值,需要完成一个情节,通过情节的目标价值Gt来计算状态的价值。其公式:

MC公式:

V(St)←V(St)+αδt

δt=[Gt?V(St)]

这里:

δt – MC误差

α – MC学习步长

TD Learning公式:

V(St)←V(St)+αδt

δt=[Rt+1+γV(St+1)?V(St)]

这里:

δt – TD Learning误差

α – TD Learning步长

γ – TD Learning报酬贴现率

TD Learning时间差分方法的目标为Rt+1+γ V(St+1),若V(St+1) 采用真实值,则TD Learning时间差分方法估计也是无偏估计,然而在试验中V(St+1) 用的也是估计值,因此TD Learning时间差分方法属于有偏估计。然而,跟蒙特卡罗MC方法相比,TD Learning时间差分方法只用到了一步随机状态和动作,因此TD Learning时间差分方法目标的随机性比蒙特卡罗MC方法中的Gt 要小,因此其方差也比蒙特卡罗MC方法的方差小。

TD Learning分类:

1)策略状态价值vπ的时序差分学习方法(单步多步)

2)策略行动价值qπ的on-policy时序差分学习方法: Sarsa(单步多步)

3)策略行动价值qπ的off-policy时序差分学习方法: Q-learning(单步),Double Q-learning(单步)

4)策略行动价值qπ的off-policy时序差分学习方法(带importance sampling): Sarsa(多步)

5)策略行动价值qπ的off-policy时序差分学习方法(不带importance sampling): Tree Backup Algorithm(多步)

6)策略行动价值qπ的off-policy时序差分学习方法: Q(σ)(多步)

TD Learning算法流程: 1)单步TD Learning时序差分学习方法:

IniTIalizeV(s) arbitrarily ?s∈S+

Repeat(for each episode):

?IniTIalize S

?Repeat (for each step of episode):

?? A←acTIongiven by π for S

??Take acTIon A, observe R,S′

??V(S)←V(S)+α[R+γV(S′)?V(S)]

?? S←S′

?Until S is terminal

2)多步TD Learning时序差分学习方法:

Input:the policy π to be evaluated

InitializeV(s) arbitrarily ?s∈S

Parameters:step size α∈(0,1], a positive integer n

Allstore and access operations (for St and Rt) can take their index mod n

Repeat(for each episode):

?Initialize and store S0≠terminal

? T←∞

? Fort=0,1,2,?:

?? Ift<Tt<T, then:

???Take an action according to π( ˙|St)

???Observe and store the next reward as Rt+1 and the next state as St+1

???If St+1 is terminal, then T←t+1

?? τ←t?n+1(τ is the time whose state's estimate is being updated)

?? Ifτ≥0τ≥0:

??? G←∑min(τ+n,T)i=τ+1γi?τ?1Ri

???if τ+n≤Tτ+n≤T then: G←G+γnV(Sτ+n)(G(n)τ)

???V(Sτ)←V(Sτ)+α[G?V(Sτ)]

?Until τ=T?1

注意:V(S0)是由V(S0),V(S1),…,V(Sn)计算所得;V(S1)是由V(S1),V(S1),…,V(Sn+1)计算所得。

TD Learning理论基础:

TD Learning理论基础如下:

1)蒙特卡罗方法

2)动态规划

3)信号系统

TD Learning算法优点:

1)不需要环境的模型;

2)可以采用在线的、完全增量式的实现方式;

3)不需等到最终的真实结果;

4)不局限于episode task;

5)可以用于连续任务;

6)可以保证收敛到 vπ,收敛速度较快。

TD Learning算法缺点:

1) 对初始值比较敏感;

2) 并非总是用函数逼近。

TD Learning算法应用:

从应用角度看,TD Learning应用领域与应用前景都是非常广阔的,目前主要应用于动态系统、机器人控制及其他需要进行系统控制的领域。

结语:

TD Learning是结合了动态规划DP和蒙特卡洛MC方法,并兼具两种算法的优点,是强化学习的中心。TD Learning不需要环境的动态模型,直接从经验经历中学习;也不需要等到最终的结果才更新模型,它可以基于其他估计值来更新估计值。输入数据可以刺激模型并且使模型做出反应。反馈不仅从监督学习的学习过程中得到,还从环境中的奖励或惩罚中得到。TD Learning算法已经被广泛应用于动态系统、机器人控制及其他需要进行系统控制的领域。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭