当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 今天介绍机器学习中一种基于概率的常见的分类方法,朴素贝叶斯,之前介绍的KNN, decision tree 等方法是一种 hard decision,因为这些分类器的输出只有0 或者 1,朴素贝

今天介绍机器学习中一种基于概率的常见的分类方法,朴素贝叶斯,之前介绍的KNN, decision tree 等方法是一种 hard decision,因为这些分类器的输出只有0 或者 1,朴素贝叶斯方法输出的是某一类的概率,其取值范围在 0-1 之间,朴素贝叶斯在做文本分类,或者说垃圾邮件识别的时候非常有效。

朴素贝叶斯就是基于我们常用的贝叶斯定理:

假设我们要处理一个二分类问题: c1,c2,给定一个样本,比如说是一封邮件,可以用向量 x 来表示,邮件就是一个文本,而文本是由单词构成的,所以 x 其实包含了这封邮件里出现的单词的信息,我们要求的就是,给定样本 x ,我们需要判断这个样本是属于 c1 还是属于 c2,当然,我们可以用概率表示为:

这个就是我们常见的后验概率。根据贝叶斯定理,我们可以得到:

这就是我们说的朴素贝叶斯,接下来的就是各种统计了。

我们给出一个利用朴素贝叶斯做文本分类的例子:

首先建立一个数据库:
def Load_dataset():
posTIngList=[['my', 'dog', 'has', 'flea',
'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him',
'to', 'dog', 'park', 'stupid'],
['my', 'dalmaTIon', 'is', 'so', 'cute',
'I', 'love', 'him'],
['stop', 'posTIng', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how',
'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0, 1, 0, 1, 0, 1]
return posTIngList, classVec

接下来,我们建立一个字典库,保证每一个单词在这个字典库里都有一个位置索引,一般来说,字典库的大小,就是我们样本的维度大小:
def Create_vocablist(dataset):
vocabSet = set([])
for document in dataset :
vocabSet = vocabSet | set(document)
return list(vocabSet)

我们可以将样本转成向量:一种方法是只统计该单词是否出现,另外一种是可以统计该单词出现的次数。
def Word2Vec(vocabList, inputSet):
returnVec = [0] * len(vocabList)
for word in inputSet :
if word in vocabList :
returnVec[vocabList.index(word)] = 1
else:
print ("the word %s is not in the vocabulary" % word)
return returnVec

def BoW_Vec(vocabList, inputSet):
returnVec = [0] * len(vocabList)
for word in inputSet :
if word in vocabList :
returnVec[vocabList.index(word)] += 1
else:
print ("the word %s is not in the vocabulary" % word)
return returnVec

接下来,我们建立分类器:这里需要注意的是,由于概率都是 0-1 之间的数,连续的相乘,会让最终结果趋于0,所以我们可以把概率相乘转到对数域的相加:
def Train_NB(trainMat, trainClass) :
Num_doc = len(trainMat)
Num_word = len(trainMat[0])
P_1 = sum(trainClass) / float(Num_doc)
P0_num = np.zeros(Num_word) + 1
P1_num = np.zeros(Num_word) + 1
P0_deno = 2.0
P1_deno = 2.0
for i in range(Num_doc):
if trainClass[i] == 1:
P1_num += trainMat[i]
P1_deno +=sum(trainMat[i])
else:
P0_num += trainMat[i]
P0_deno += sum(trainMat[i])
P1_vec = np.log(P1_num / P1_deno)
P0_vec = np.log(P0_num / P0_deno)

return P_1, P1_vec, P0_vec

def Classify_NB(testVec, P0_vec, P1_vec, P1):
p1 = sum(testVec * P1_vec) + math.log(P1)
p0 = sum(testVec * P0_vec) + math.log(1-P1)
if p1 > p0:
return 1
else:
return 0

def Text_parse(longstring):
import re
regEx = re.compile(r'W*')
Listoftokens = regEx.split(longstring)
return [tok.lower() for tok in Listoftokens if len(tok)>0]
# return Listoftokens

这里给出简单的测试:

test_string = 'This book is the best book on Python or M.L.
I have ever laid eyes upon.'

wordList = Text_parse(test_string)

Mydata, classVec = Load_dataset()

'''
Doc_list = []
Full_list = []
for i in range (len(Mydata)):
Doc_list.append(Mydata[i])
Full_list.extend(Mydata[i])
'''

Vocablist = Create_vocablist(Mydata)

Wordvec = Word2Vec(Vocablist, Mydata[0])

trainMat = []
for doc in Mydata:
trainMat.append(Word2Vec(Vocablist, doc))

P_1, P1_vec, P0_vec = Train_NB(trainMat, classVec)

print Mydata
print classVec
print wordList

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭