当前位置:首页 > 智能硬件 > 人工智能AI
[导读] Pybrain号称最好用的Python神经网络库。其实Scikit-Learn号称Python上最好用的机器学习库,但是它偏偏就没有神经网络这块,所以就与我无缘了。 之前也看过一些提到N

Pybrain号称最好用的Python神经网络库。其实Scikit-Learn号称Python上最好用的机器学习库,但是它偏偏就没有神经网络这块,所以就与我无缘了。

之前也看过一些提到Neurolab这个库的,打算之后尝试一下(好像支持的神经网络不太一样)。

Pybrain的文档传说中写得不错,但是我需要的例子它并没有。官方文档给的例子是用于分类的,而不是数据拟合(预测,或者叫做回归问题)。

另外,官方文档的函数(方法)说明并不全,有一些需要自己通过help函数在python shell里调用,或者直接阅读源代码。

好了言归正传。大概分为以下这几步。
. 构造神经网络
. 构造数据集
. 训练神经网络
. 结果可视化
. 验证与分析

构造神经网络

可以采用快速建立神经网络的模式,也可以自己设定神经网络。这里采用第二种做法,建立的是前馈神经网络。
from pybrain.structure import *
# 建立神经网络fnn
fnn = FeedForwardNetwork()

# 设立三层,一层输入层(3个神经元,别名为inLayer),一层隐藏层,一层输出层
inLayer = LinearLayer(3,)
hiddenLayer = SigmoidLayer(7,)
outLayer = LinearLayer(1,)

# 将三层都加入神经网络(即加入神经元)
fnn.addInputModule(inLayer)
fnn.addModule(hiddenLayer)
fnn.addOutputModule(outLayer)

# 建立三层之间的连接
in_to_hidden = FullConnecTIon(inLayer, hiddenLayer)
hidden_to_out = FullConnecTIon(hiddenLayer, outLayer)

# 将连接加入神经网络
fnn.addConnecTIon(in_to_hidden)
fnn.addConnecTIon(hidden_to_out)

# 让神经网络可用
fnn.sortModules()

构造数据集

在构造数据集的时候,我用的是SupervisedDataset,即监督数据集。也可以试一试别的。
from pybrain.supervised.trainers import BackpropTrainer

# 定义数据集的格式是三维输入,一维输出
DS = SupervisedDataSet(3,1)

# 往数据集内加样本点
# 假设x1,x2,x3是输入的三个维度向量,y是输出向量,并且它们的长度相同
for i in len(y):
DS.addSample([x1[i], x2[i], x3[i]], [y[i]])

# 如果要获得里面的输入/输出时,可以用
X = DS['input']
Y = DS['target']

# 如果要把数据集切分成训练集和测试集,可以用下面的语句,训练集:测试集=8:2
# 为了方便之后的调用,可以把输入和输出拎出来
dataTrain, dataTest = DS.splitWithProportion(0.8)
xTrain, yTrain = dataTrain['input'], dataTrain['target']
xTest, yTest = dataTest['input'], dataTest['target']

构造数据集部分就这样告一段落了。

训练神经网络

俗话说得好,80%的工作往往是20%的部分完成的。嗯哼,其实最重要的代码就是如下这几行啦。
不过调用的是别人的东西,也不知道内部的实现比例,就是开个玩笑。
from pybrain.supervised.trainers import BackpropTrainer

# 训练器采用BP算法
# verbose = True即训练时会把Total error打印出来,库里默认训练集和验证集的比例为4:1,可以在括号里更改
trainer = BackpropTrainer(fnn, dataTrain, verbose = True, learningrate=0.01)

# maxEpochs即你需要的最大收敛迭代次数,这里采用的方法是训练至收敛,我一般设为1000
trainer.trainUntilConvergence(maxEpochs=1000)

结果可视化

数据可视化就不提了,基本上用的是Pylab来进行数据可视化,具体可见这篇博文:
Python的一些画图函数 。

验证与分析

首先,我们可以挑一个随机数据来看看结果。
import random

# c为从0到xTest的长度(包括0,不包括长度)之间的随机值
c = random.randint(0, xTest.shape[0])

# X2为xTest的一个随机样本点
X2 = xTest[c,:]

# activate函数即神经网络训练后,预测的X2的输出值
prediction = fnn.activate(X2)

# 可以将其打印出来
print('true number is: ' + str(yTest[c]),
'prediction number is:' + str(prediction),
'error:' + str((prediction-yTest[c])/yTest[c]))

我们可以把神经网络打印出来,此处的代码是在stackoverflow里找到的,出处忘了,感谢那个哥们的轮子。
这样就可以看各条连接的权重了。

for mod in fnn.modules:
print "Module:", mod.name
if mod.paramdim > 0:
print "--parameters:", mod.params
for conn in fnn.connections[mod]:
print "-connection to", conn.outmod.name
if conn.paramdim > 0:
print "- parameters", conn.params
if hasattr(fnn, "recurrentConns"):
print "Recurrent connections"
for conn in fnn.recurrentConns:
print "-", conn.inmod.name, " to", conn.outmod.name
if conn.paramdim > 0:
print "- parameters", conn.params

我们可以调用一个计时器来看程序的运行时间,判断性能

import time

# 在需要计时的代码前调用这个
start = time.clock()

# 在需要计时的代码后再调用一次clock函数
elapsed = (time.clock()-start)
print("Time used:" + str(elapsed))

如果需要一些统计数据的话,可以自己写一些统计类的函数,或者找包里的tools模块,有一些统计函数,比如均方误差(MSE)等。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭