当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 训练专项网络 还记得我们在开始时丢弃的70%的培训数据吗?结果表明,如果我们想在Kaggle排行榜上获得一个有竞争力的得分,这是一个很糟糕的主意。在70%的数据和挑战的测试集中,我们的模

训练专项网络

还记得我们在开始时丢弃的70%的培训数据吗?结果表明,如果我们想在Kaggle排行榜上获得一个有竞争力的得分,这是一个很糟糕的主意。在70%的数据和挑战的测试集中,我们的模型还有相当多特征没有看到。

因此,改变之前只训练单个模型的方式,让我们训练几个专项网络,每个专项网络预测一组不同的目标值。我们将训练一个只预测left_eye_center和right_eye_center的模型,一个仅用于nose_TIp等等;总的来说,我们将有六个模型。这将允许我们使用完整的训练数据集,并希望获得整体更有竞争力的分数。

六个专项网络都将使用完全相同的网络架构(一种简单的方法,不一定是最好的)。因为训练必须比以前花费更长的时间,所以让我们考虑一个策略,以便我们不必等待max_epochs完成,即使验证错误停止提高很多。这被称为早期停止,我们将写另一个on_epoch_finished回调来处理。这里的实现:
class EarlyStopping(object):
def __init__(self, paTIence=100):
self.paTIence = paTIence
self.best_valid = np.inf
self.best_valid_epoch = 0
self.best_weights = None

def __call__(self, nn, train_history):
current_valid = train_history[-1]['valid_loss']
current_epoch = train_history[-1]['epoch']
if current_valid < self.best_valid:
self.best_valid = current_valid
self.best_valid_epoch = current_epoch
self.best_weights = nn.get_all_params_values()
elif self.best_valid_epoch + self.patience < current_epoch:
print("Early stopping.")
print("Best valid loss was {:.6f} at epoch {}.".format(
self.best_valid, self.best_valid_epoch))
nn.load_params_from(self.best_weights)
raise StopIteration()

可以看到,在call函数里面有两个分支:第一个是现在的验证错误比我们之前看到的要好,第二个是最好的验证错误所在的迭代次数和当前迭代次数的距离已经超过了我们的耐心。在第一个分支里,我们存下网络的权重:
self.best_weights = nn.get_all_params_values()

第二个分支里,我们将网络的权重设置成最优的验证错误时存下的值,然后发出一个StopIteration,告诉NeuralNet我们想要停止训练。
nn.load_params_from(self.best_weights)
raise StopIteration()

让我们在net的定义中更新on_epoch_finished处理程序的列表,并添加EarlyStopping:
net8 = NeuralNet(
# ...
on_epoch_finished=[
AdjustVariable('update_learning_rate', start=0.03, stop=0.0001),
AdjustVariable('update_momentum', start=0.9, stop=0.999),
EarlyStopping(patience=200),
],
# ...
)

到目前为止一切顺利,但是如何定义这些专项网络进行相应的预测呢?让我们做一个列表:
SPECIALIST_SETTINGS = [
dict(
columns=(
'left_eye_center_x', 'left_eye_center_y',
'right_eye_center_x', 'right_eye_center_y',
),
flip_indices=((0, 2), (1, 3)),
),

dict(
columns=(
'nose_tip_x', 'nose_tip_y',
),
flip_indices=(),
),

dict(
columns=(
'mouth_left_corner_x', 'mouth_left_corner_y',
'mouth_right_corner_x', 'mouth_right_corner_y',
'mouth_center_top_lip_x', 'mouth_center_top_lip_y',
),
flip_indices=((0, 2), (1, 3)),
),

dict(
columns=(
'mouth_center_bottom_lip_x',
'mouth_center_bottom_lip_y',
),
flip_indices=(),
),

dict(
columns=(
'left_eye_inner_corner_x', 'left_eye_inner_corner_y',
'right_eye_inner_corner_x', 'right_eye_inner_corner_y',
'left_eye_outer_corner_x', 'left_eye_outer_corner_y',
'right_eye_outer_corner_x', 'right_eye_outer_corner_y',
),
flip_indices=((0, 2), (1, 3), (4, 6), (5, 7)),
),

dict(
columns=(
'left_eyebrow_inner_end_x', 'left_eyebrow_inner_end_y',
'right_eyebrow_inner_end_x', 'right_eyebrow_inner_end_y',
'left_eyebrow_outer_end_x', 'left_eyebrow_outer_end_y',
'right_eyebrow_outer_end_x', 'right_eyebrow_outer_end_y',
),
flip_indices=((0, 2), (1, 3), (4, 6), (5, 7)),
),
]

我们很早前就讨论过在数据扩充中flip_indices的重要性。在数据介绍部分,我们的load_data()函数也接受一个可选参数,来抽取某些列。我们将在用专项网络预测结果的fit_specialists()中使用这些特性:
from collections import OrderedDict
from sklearn.base import clone

def fit_specialists():
specialists = OrderedDict()

for setting in SPECIALIST_SETTINGS:
cols = setting['columns']
X, y = load2d(cols=cols)

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭