当前位置:首页 > 通信技术 > 云通信与安全
[导读] 由腾讯云基础产品中心、腾讯架构平台部组成的腾讯云FPGA联合团队,在这里介绍国内首款FPGA云服务器的工程实现深度学习算法(AlexNet),讨论深度学习算法FPGA硬件加速平台的架构。

由腾讯云基础产品中心、腾讯架构平台部组成的腾讯云FPGA联合团队,在这里介绍国内首款FPGA云服务器的工程实现深度学习算法(AlexNet),讨论深度学习算法FPGA硬件加速平台的架构。

在1 月 20 日,腾讯云推出国内首款高性能异构计算基础设施——FPGA 云服务器,将以云服务方式将大型公司才能长期支付使用的 FPGA 普及到更多企业,企业只需支付相当于通用CPU约40%的费用,性能可提升至通用CPU服务器的30倍以上。具体分享内容如下:
 

1. 综述

  2016年3月份AI围棋程序AlphaGo战胜人类棋手李世石,点燃了业界对人工智能发展的热情,人工智能成为未来的趋势越来越接近。

人工智能包括三个要素:算法,计算和数据。人工智能算法目前最主流的是深度学习。计算所对应的硬件平台有:CPU、GPU、FPGA、ASIC。由于移动互联网的到来,用户每天产生大量的数据被入口应用收集:搜索、通讯。我们的QQ、微信业务,用户每天产生的图片数量都是数亿级别,如果我们把这些用户产生的数据看成矿藏的话,计算所对应的硬件平台看成挖掘机,挖掘机的挖掘效率就是各个计算硬件平台对比的标准。

最初深度学习算法的主要计算平台是 CPU,因为 CPU 通用性好,硬件框架已经很成熟,对于程序员来说非常友好。然而,当深度学习算法对运算能力需求越来越大时,人们发现 CPU 执行深度学习的效率并不高。CPU 为了满足通用性,芯片面积有很大一部分都用于复杂的控制流和Cache缓存,留给运算单元的面积并不多。这时候,GPU 进入了深度学习研究者的视野。GPU原本的目的是图像渲染,图像渲染算法又因为像素与像素之间相对独立,GPU提供大量并行运算单元,可以同时对很多像素进行并行处理,而这个架构正好能用在深度学习算法上。

GPU 运行深度学习算法比 CPU 快很多,但是由于高昂的价格以及超大的功耗对于给其在IDC大规模部署带来了诸多问题。有人就要问,如果做一个完全为深度学习设计的专用芯片(ASIC),会不会比 GPU 更有效率?事实上,要真的做一块深度学习专用芯片面临极大不确定性,首先为了性能必须使用最好的半导体制造工艺,而现在用最新的工艺制造芯片一次性成本就要几百万美元。去除资金问题,组织研发队伍从头开始设计,完整的设计周期时间往往要到一年以上,但当前深度学习算法又在不断的更新,设计的专用芯片架构是否适合最新的深度学习算法,风险很大。可能有人会问Google不是做了深度学习设计的专用芯片TPU?从Google目前公布的性能功耗比提升量级(十倍以上的提升)上看,还远未达到专用处理器的提升上限,因此很可能本质上采用是数据位宽更低的类GPU架构,可能还是具有较强的通用性。这几年,FPGA 就吸引了大家的注意力,亚马逊、facebook等互联网公司在数据中心批量部署了FPGA来对自身的深度学习以云服务提供硬件平台。

FPGA 全称「可编辑门阵列」(Field Programmable Gate Array),其基本原理是在 FPGA 芯片内集成大量的数字电路基本门电路以及存储器,而用户可以通过烧写 FPGA 配置文件来来定义这些门电路以及存储器之间的连线。这种烧入不是一次性的,即用户今天可以把 FPGA 配置成一个图像编解码器,明天可以编辑配置文件把同一个 FPGA 配置成一个音频编解码器,这个特性可以极大地提高数据中心弹性服务能力。所以说在 FPGA 可以快速实现为深度学习算法开发的芯片架构,而且成本比设计的专用芯片(ASIC)要便宜,当然性能也没有专用芯片(ASIC)强。ASIC是一锤子买卖,设计出来要是发现哪里不对基本就没机会改了,但是 FPGA 可以通过重新配置来不停地试错知道获得最佳方案,所以用 FPGA 开发的风险也远远小于 ASIC。

2. Alexnet 算法分析2.1 Alexnet模型结构

Alexnet模型结构如下图2.1所示。

图2.1 Alexnet模型

模型的输入是3x224x224大小图片,采用5(卷积层)+3(全连接层)层模型结构,部分层卷积后加入Relu,Pooling 和NormalizaTIon层,最后一层全连接层是输出1000分类的softmax层。如表1所示,全部8层需要进行1.45GFLOP次乘加计算,计算方法参考下文。

层数

kernel个数

每个kernel进行卷积次数

每个kernel一次卷积运算量

浮点乘加次数

 

第1层

96

3025

(1x363)x(363x1)

96x3025x363=105M=210MFLOP

 

第2层

256

729

(1x1200)x(1200x1)

256x729x1200=224M=448MFLOP

 

第3层

384

169

(1x2304)x(2304x1)

384x169x2304=150M=300MFLOP

 

第4层

384

169

(1x1728)x(1728x1)

384x169x1728=112M=224MFLOP

 

第5层

256

169

(1x1728)x(1728x1)

256x169x1728=75M=150MFLOP

 

第6层

1

4096

(1x9216)x(9216x1)

4096x9216=38M=76MFLOP

 

第7层

1

4096

(1x4096)x(4096x1)

4096x4096=17M=34MFLOP

 

第8层

1

1000

(1x4096)x(4096x1)

1000x4096=4M=8MFLOP

 

总和

1.45GFLOP

 

表2.1 Alexnet浮点计算量

2.2 Alexnet 卷积运算特点

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭