当前位置:首页 > 消费电子 > 音频技术
[导读]   收音机的基本工作原理可以简单归纳为:第一步要接收到相应频率的无线电波,第二步是从无线电波上取出调制在其上的声音信息,第三步为把声音信息还原成人耳能听到的声音。如图1所示,简易的收音机的系统由

  收音机的基本工作原理可以简单归纳为:第一步要接收到相应频率的无线电波,第二步是从无线电波上取出调制在其上的声音信息,第三步为把声音信息还原成人耳能听到的声音。如图1所示,简易的收音机的系统由五大模块组成。调电台信号有调谐回路选择接收后,接收到的无线电信号是非常微弱的,再通过调谐电路后,还需要经过高频放大电路进行高频放大到一定幅度后,才能送往二极管和滤波电容构成的倍压检波电路进行检波,将调幅信号包络解调下来,得到调制前面的音频信号,将音频信号进行低频放大,声音信息此时还是一种幅度很低的电信号,我们人耳是听不到的,在经过晶体管电流放大后,送到扬声器,还原成可闻得声波信号。

  该简易收音机制作非常简单,通过改变电感和电容的大小来接收中段550kHz到1600kHz内的简易收音机。而且收音机音频输出基本达到人耳能够听出的程度。

  根据上述收音机基本工作原理用芯片CD4011设计出了如图2所示的简易收音机的工作原理电路图。


 

  2、电路工作原理分析

  电路图如图2所示,通常情况下,这类与非门电路都作在开、关两种状态,即输出高电平和低电平上。事实上,在高低电平的转换过程中,存在一个过渡区,过渡区的中间部分基本上呈线性状态。因此,可以利用反馈电路选择适当的工作状态,使得各与非门都处于放大状态。电路及工作原理如图2所示,分别将每个与非门的输入端并接在一起作反相器用,转换高低电平。L1,C1为接收谐振回路,R1为直流反馈电阻,C2为交流旁路作用,接收到信号经U1A高频放大后,通过C3耦合,送到由D1、D2、R2、C4构成的倍压检波电路进行检波,再经门U1B、U1C、U1D进一步放大后送到耳机输出。途中的C1可选单串可变电容,线圈L可在50MM的磁棒上绕80~100T,耳机应该选用高阻耳机,也可增加一级集成音频放大电路如LM386,或用三极管作阻抗变换,通过增加和减少磁棒上线圈的匝数,以保证收音机处于合适的频率接收范围之内。

  注意:(1)CD4011:4-2输入端与非门数字集成电路。

  (2)可变电容选用型号为CBM-233P,电容量在5~141p之间变化。电感线圈L用直径0.18mm的漆包线5*3*55mm的磁棒上绕100匝。三极管用9012.电源用4节5号电池。耳机用32欧姆的立体声耳机。

  3、各模块工作原理的分析与介绍

  (1)调谐回路模块


  图4 高频放大和倍压检波电路图

  如图4所示,有与非门CD4011进行高频放大,然后又二极管D1、D2及电容C3、电阻R2等组成的倍压检波电路进行检波。当信号电压正半周时,信号电压进过D1对C3进行充电,C3上的电压为左正右负。当信号电压为负半周时,信号电压与C3串联后流经二极管D2和电阻R2,检波负载电阻R2上即可得到约2倍于信号电压的输出电压,电容C4的作用是滤除检波输出信号中的高频成分,得到音频信号。

  图5 低频放大电路图

  如图5所示中,CMOS模拟放大电路给CMOS门电路加上适当的偏置电压,可以使其工作于线性放大状态。在与非门CD4011的输出端与输入端之间并接一个反馈电阻R4,将非门的工作点偏置于转移特性曲线的中间,,即构成了一个线性模拟放大器,放大倍数等于反馈电阻R4与输入电阻R3之比。

  (4)电源放大模块

  如图6所示,由于CMOS电路输出电流很小,为使收音机有足够的音量,电路中由晶体管VT构一级电流放大器,R5是晶体管VT的偏置电阻。电流放大模块实质上是一个射极跟随器,可将CMOS电路的输出电流放大。

  四、【仿真与仿真结果分析】


  如图7所示为整体电路仿真图,仿真后听见扬声器发出嗡嗡的声音,按照原理改变电感的大小能收到中波段535kHz到1065kHz内的电台,但经过调整始终没有接受到有效频段内的声音。因此对设计模块进行仿真测试。 (1) 低频放大仿真

  如图8所示,左侧接入一个交流信号源,并在放大电路的另一端接上示波器,从图9 上可以看出输入信号(第一个波形)经过放大




 

  (2) 电源放大仿真

  如图10所示,在左侧接入一个交流信号源,并在放大电路的另一端接上示波器,从图11上可以看出输入信号(第一个波形)与输出信号(第四个波形)之间的差距。

  图11 电源放大前仿真波形图

  (3) 高频放大仿真

  仿真电路图如图12所示,在左侧接入一个交流信号源,再给电路两端接入两个示波器,图13所示信号经过放大电路放大后波形如图14所示。可以看出信号经过放大后幅度明显增大。


  五、【元器件清单】

  总结

  通过CD4011芯片制作简易收音机的设计,了解了收音机的工作原理,真正的理解了调制与解调的过程,也了解了 CD4011 芯片的引脚的功能和使用方法。

 改进思路

  在仿真时电路图中的电路元件CD4011在Proteus中是找不到的,所以用了与非门4011代替,由于CD4011是一个包含4个与非门的CMOS电路,每个与非门有两个输入端一个输出端。当两个输入端有一个输入为0,输出就为0。只有当输入均为1时,输出才为1。当两个输入端都为0时,输出是1。所以CD4011就用图中的4011代替了。简易收音机从接收天线得到的高频天线信号一般非常弱,即使已经增加高频放大器,检波输出的功率通常也只有几毫瓦,用耳机还可以听,但要用扬声器就显得太小,因此在检波输出后增加电流放大器来推动扬声器来工作。如果采取超外差式电路,在收音机本振频率和别接收信号的频率相差一个中频,在混频器之前的选择电路和本振采用统一调谐线,由于中频固定,且频率比高频已调信号低,中方的增益可以可以做得较大,工作也比较稳定,通频带特性也可以做得较理想,这样可以使检波器获得足够大的信号,从而使整个简易收音机出出音质较好的音频信号。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭