当前位置:首页 > 公众号精选 > 嵌入式案例Show
[导读]点击上方蓝字关注我哦~ 01 前言 在前面两篇关于火焰检测的文章中,最终的效果不是很好,为了提高火焰检测的效果,又搜集了一些火焰数据,训练的网络由之前的yolov3-tiny改为mobilev2-yolov3,最终在树莓派上利用NCNN推算框架,比之前的效果要好很多,如图:

点击上方蓝字关注我哦~

01

前言


在前面两篇关于火焰检测的文章中,最终的效果不是很好,为了提高火焰检测的效果,又搜集了一些火焰数据,训练的网络由之前的yolov3-tiny改为mobilev2-yolov3,最终在树莓派上利用NCNN推算框架,比之前的效果要好很多,如图:

02

实现步骤


在darknet下训练

训练的cfg和model文件如果需要联系笔者。

在树莓派上部署NCNN

官方提供了在树莓派上的编译说明,按照这个说明是可以编译起来的。这里可以参考这篇文章来安装依赖:

sudo apt-get install git cmakesudo apt-get install -y gfortransudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compilersudo apt-get install --no-install-recommends libboost-all-devsudo apt-get install -y libgflags-dev libgoogle-glog-dev liblmdb-dev libatlas-base-dev

然后下载NCNN:

git clone https://github.com/Tencent/ncnn.gitcd ncnn

编辑CMakeList.txt文件,添加examples和benchmark:

add_subdirectory(examples)add_subdirectory(benchmark)add_subdirectory(tools)

然后就可以按照官方文档进行编译了,官方提供的pi3 toolchain在4代Raspbian上可以直接使用,最新版的NCNN会自动使用OpenMP:

cd <ncnn-root-dir>mkdir -p buildcd buildcmake -DCMAKE_TOOLCHAIN_FILE=../toolchains/pi3.toolchain.cmake -DPI3=ON ..make -j4

模型转换

cd <ncnn-root-dir>cd buildcd tools/darknet./darknet2ncnn mobilenetV2-yolov3.cfg mobilenetV2-yolov3.weights mobilenetV2-yolov3.param mobilenetV2-yolov3.bin 1
  运行
cd <ncnn-root-dir>cd buildcd example./mobilenetV2-yolov3

部分代码

#include "net.h"
#include "platform.h"

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <stdio.h>
#include <vector>
#include <sys/time.h>
#include <stdio.h>
#include <string.h>
#if NCNN_VULKAN
#include "gpu.h"
#endif // NCNN_VULKAN

#define MobileNetV2-yolov3_TINY 1 //0 or undef for MobileNetV2-yolov3

struct Object
{
cv::Rect_<float> rect;
int label;
float prob;
};

double what_time_is_it_now(){
struct timeval time;
if (gettimeofday(&time,NULL)){
return 0;
}
return (double)time.tv_sec + (double)time.tv_usec * .000001;
}
ncnn::Net MobileNetV2-yolov3;
static int detect_MobileNetV2-yolov3(const cv::Mat& bgr, std::vector<Object>& objects)
{
double time;
#if NCNN_VULKAN
MobileNetV2-yolov3.opt.use_vulkan_compute = true;
#endif // NCNN_VULKAN

const int target_size = 320;
time = what_time_is_it_now();
int img_w = bgr.cols;
int img_h = bgr.rows;
//PIXEL_BGR
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, bgr.cols, bgr.rows, target_size, target_size);

const float mean_vals[3] = {0, 0, 0};
const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f};
in.substract_mean_normalize(mean_vals, norm_vals);

ncnn::Extractor ex = MobileNetV2-yolov3.create_extractor();
ex.set_num_threads(4);

ex.input("data", in);

ncnn::Mat out;
ex.extract("output", out);
printf("Predicted in %f seconds.11\n", what_time_is_it_now()-time);
printf("%d %d %d\n", out.w, out.h, out.c);
objects.clear();
for (int i = 0; i < out.h; i++)
{
const float* values = out.row(i);

Object object;
object.label = values[0];
object.prob = values[1];
object.rect.x = values[2] * img_w;
object.rect.y = values[3] * img_h;
object.rect.width = values[4] * img_w - object.rect.x;
object.rect.height = values[5] * img_h - object.rect.y;

objects.push_back(object);
}

return 0;
}

void draw_objects(cv::Mat& image, const std::vector<Object>& objects){
static const char* class_names[] = {"background", "fire"};

//cv::Mat image = bgr.clone();

for (size_t i = 0; i < objects.size(); i++)
{
const Object& obj = objects[i];

fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);

cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0));

char text[256];
sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);

int baseLine = 0;
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);

int x = obj.rect.x;
int y = obj.rect.y - label_size.height - baseLine;
if (y < 0)
y = 0;
if (x + label_size.width > image.cols)
x = image.cols - label_size.width;

cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
cv::Scalar(255, 255, 255), -1);

cv::putText(image, text, cv::Point(x, y + label_size.height),
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
}
}

int main(int argc, char** argv){
MobileNetV2-yolov3.load_param("MobileNetV2-YOLOv3-Lite.param");
MobileNetV2-yolov3.load_model("MobileNetV2-YOLOv3-Lite.bin");
cv::VideoCapture cap(0);
if(!cap.isOpened()){
printf("capture err");
return -1;
}
cv::Mat cv_img;
std::vector<Object> objects;
while(true){
if(!cap.read(cv_img)){
printf("cv_img err");
return -1;
}
detect_MobileNetV2-yolov3(cv_img, objects);
draw_objects(cv_img, objects);
cv::imshow("video", cv_img);
cv::waitKey(1);
}
cap.release();
return 0;
}


/ The End /

目前测试效果还比较满意,但是每帧处理的时间需要0.3s左右,还不能实时,接下来的目标是达到实时检测,并尝试别推理框架,比如MNN和TNN。


公众号后台回复 火焰数据 ” 获取火焰数据集

推荐阅读



树莓派系列(一):基于openCV+python的颜色识别(红色)


图像变换:opencv基于树莓派和Android端分别实现

扫码关注我们

看更多嵌入式案例

喜欢本篇内容请给我们点个在看

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭