水动力测控系统方案介绍,提出可重构测控系统的必要性探讨
扫描二维码
随时随地手机看文章
测控系统是生活中的常见系统,测控系统的存在为诸多应用提供了保障和便捷。对于测控系统,自动化相关专业的朋友并不陌生。为进一步增进大家对测控系统的了解,本文将对水动力测控系统的设计方案以及提出可重构测控系统的必要性加以介绍。如果你对本文内容具有兴趣,不妨继续往下阅读哦。
一、水动力测控系统设计
测控系统是水动力实验中的重要测试设备。在实验中有压力、拉力、加速度等物理量通过传感器转换成电压值,需要准确记录。虽然实验模型有很多种,但是共用传感器及测控系统,因此对测控系统的通用性和用户界面友好性提出了要求。本文采用嵌入式架构设计了测控系统。
本文设计的系统硬件基于STM32芯片,具有很强的扩展能力,易于移植,其外设单元资源丰富,能够达到系统要求的精度和范围。
1、硬件架构
采用嵌入式架构(见图1)的优点是通用性强,便于在多平台移植;主控芯片外围电路模块丰富,包括ADC、DA、CAN和SDIO等接口,独立完成对多种类型设备的测量、控制。芯片的主频高,运算能力也很强,适合嵌入复杂的算法。完全适合作为测控系统,具备系统升级和扩展的空间。
图1 嵌入式测控系统硬件架构
系统采用意法半导体推出的STM32F103,是基于Coretex-M3内核的32位ARM芯片系列,而ZET6属于该系列的高容量芯片,片内Flash为512KB,片内SRAM为64kB,主频72MHz,具备26位地址线和16位数据宽度。
系统的显示屏为翰彩4.3寸TFT液晶屏,分辨率为640&TImes;480,显示屏驱动模块是SSD1963,采用了16位(5位红色,6位绿色,5位蓝色)64K接口模式,由FSMC数据接口连接控制。覆盖电阻式触摸屏,控制芯片ADS7843输入触摸屏四路电压,用SPI通讯输出触摸点位置信息。图2所示为LCD接口电路。
图2 LCD驱动模块的接口电路
内部ADC模块是12位逐次逼近型,有16通道,采样率最高1MHz。STM32F103的CAN总线单元被称为bxCAN(BasicExtendedCAN),它支持CAN协议2.0A和2.0B;选用的CAN收发器是TJA1050,在CAN协议控制器和物理总线之间起到接口的作用,设计有120Ω的终端匹配电阻以适应不同的总线网络。图3所示为CAN模块的接口电路。另外,本文还设计了RS232接口以适应不同接口要求。
图3 CAN模块的接口电路
二、提出可重构测控系统的必要性
测控系统一般是指基于计算机实现数据采集和控制的系统。测控系统在工业现场控制、家庭数字化管理、通信和网络等方面应用广泛,并不断向低成本、高速、高性能、智能化、开放化方向迈进。但现代测控系统在设计和应用中仍然面临不少的难题:
①设计速度难以适应产品更新换代的快速变化。一般测控系统的设计都是针对某个特定的任务,从设计到投入使用的周期至少1~2年,甚至长达4~5年。因此,在设计阶段堪称先进的方案往往在投入使用伊始就已落后了。
②设计方案功能固定,通用性差,难以满足不同层次、不断变化的用户需求。测控系统设计针对具体用户,配置各异,通用性较差。如何满足不同用户、不同层次的需要,尤其是多任务用户需要是一大难题。
③虚拟仪器技术的应用使得软件重构成为可能,但是达到还难以达到硬件重构和“即插即用”的效果。
因此,研究一种软硬件可重构、开放化、普适性的测控系统,对于实现测控系统的快速、开放式设计,降低用户使用成本具有很高的应用价值。本文基于现代测控系统的通用化结构特征和可重构的现场可编程门阵列FPGA技术的发展,提出一种可重构测控系统(Reconfigurable Mo—nitoring System,RMS)的设计构想,并给出其应用实例。
以上便是此次小编带来的“测控系统”相关内容,通过本文,希望大家对水动力测控系统设计方案以及提出可重构测控系统的必要性具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!