当前位置:首页 > 智能硬件 > 机器人
[导读]   提出一种新的机器人视觉伺服控制方法,该方法参照人的抓取动作,首先根据物体在图像中的位置信息,利用模糊逻辑将机器人的手爪移动到物体附近,然后再根据物体当前图像和参考图像之差,利用局部神经网络对

  提出一种新的机器人视觉伺服控制方法,该方法参照人的抓取动作,首先根据物体在图像中的位置信息,利用模糊逻辑将机器人的手爪移动到物体附近,然后再根据物体当前图像和参考图像之差,利用局部神经网络对手爪的位姿进行精确调整。整个过程无需机器人和摄像机的标定,能有效利用人的控制经验,伺服速度快,控制精度高。仿真结果说明本方法的有效性。

  引言(IntroducTIon)

  将神经网络应用到机器人的视觉伺服,可省去基于图像雅可比矩阵方法中复杂的摄像机标定和矩阵求逆操作。但神经网络的控制精度和学习速度与学习样本的数量和网络结构的复杂性密切相关,单靠一个神经网络很难普适整个机器人工作空间,为此文[1]采用一个全局BP网和一个局部BP网分别适用于机器人的全局工作空间和局部工作空间,以减少学习样本和网络节点,提高每个神经网络的学习效率;文[2]用若干自适应线性神经元逼近相应的局部图像雅可比矩阵,而由一个自组织映射网根据机械手的当前位置来决定哪一个神经元被激活;文[3]用多个CMAC组成分层结构,由管理层根据输入参数选择一个执行层,以控制部分任务空间里的机器人动作;文[4]则用一系列局部神经网络对对应示教轨迹点邻域进行近似。

  以上研究均采用了分级控制的思想,但由于神经网络学习方法的固有缺陷,全局网的设计存在一些不足:一方面全局网的覆盖范围大,相应的寻优空间大,使得权值的学习可能陷入局部极小,进而影响到局部神经网路的选择,甚至控制误差的收敛;另一方面,人在机器人控制中的一些先验知识却没能被网络学习所利用。而模糊逻辑恰能很好地表述和记忆人的经验知识,从而有效地引导机器人的操作[5,6]。文[5]根据运动目标在手眼中的面积等图像特征判断目标离手眼的距离,进而将摄像机的控制分为接近和对准两个阶段,并分别运用模糊逻辑和模糊神经网络完成这两个阶段的控制;文[6]首先将机械手的各种操作分解为接近、对中、抓取等基本行为,并针对各基本行为总结相应的模糊控制规则,以减少整个操作的模糊控制规则数量,实现了基于行为的机械手视觉伺服控制。

  本文以机器人的智能抓取作业为研究背景,针对工件形状和手爪抓取姿态已知而工件位姿未知的情况,首先用模糊视觉伺服控制器进行机器人手爪的初步定位,然后利用局部神经网络对手爪的位姿作精确调整。整个控制过程模仿了人的操作行为,控制速度快,控制精度高。六自由度机器人的数字仿真结果说明算法的有效性。

  2 机器人视觉伺服实现方案(Scheme for Robot Visual Servoing Control)

  2.1 视觉伺服系统的结构(Structure of Visual Servoing System)

  为完成对工件的智能抓取,本文采用图1所示系统结构。其中六自由度关节机器人可达到三维空间的任意位姿;CCD1为固定安装在工作现场中的数字摄像机,能在较大范围内获取工件质心的位置;CCD2安装在手爪上,与手爪的相对位姿固定,可以近距离且准确地观察工件的摆放姿态。

 

  2.2 智能抓取中的模糊行为(Fuzzy Behavior in Intelligent Grasp ) 人在抓取远处物体时,首先需要利用眼睛观察物体的方位,但接下来并不是立刻调整好手部的姿态然后一步到位将物体抓住,而是首先将手移到物体附近,待看清物体的准确姿态后再调整手部的姿态,最后将物体准确抓取。

  同样的控制思想可应用到机器人的智能抓取作业中,使机器人的控制变得容易。首先,在手爪的初步定位中,因不涉及手爪姿态的控制,所以完全可以只靠机器人的三个自由度(如图1中的21,θθ和3θ)的运动来实现,而控制变量的减少可以大大简化控制器的设计。其次,由于完全模仿人的动作,许多人的控制经验可以被充分利用。例如,在图1的配置中,根据工件在CCD1拍摄的图像中的位置(假设已通过镜像调整到与人的视觉同向),就可以总结如下的控制策略:

  如果工件在图像的上方,那么二关节下压或三关节上抬;

  如果工件在图像的左方,那么一关节左转。 显然,这些控制规则都是用模糊语言描述的。这种基于模糊行为的视觉伺服方法能帮助机器人进行大致定位,其间机器人各关节的运动变化规律明确、合理且可控,从而有效避免了神经网络方法中学习的盲目性和输出轨迹的不可预测性。

  但基于模糊逻辑的方法却不太适合于机器人手爪的精确位姿控制。因为精确的位姿控制需要机器人六个自由度的协调配合,其控制随机器人各关节当前位置的不同而不同,很难由人进行总结。所以本文就智能抓取这一阶段任务选用了基于局部神经网络的视觉伺服方法。

  2.3 智能抓取中的局部神经网络(Local Neural Network in Intelligent Grasp)

 

  2.4 系统整体实现方案(ImplementaTIon Scheme for the Whole System)

  系统的整体实现方案如图1所示。整个智能抓取操作分手爪的初步定位和精确定位等两步进行。

  2.4.1 手爪的初步定位(IniTIal PosiTIon of the Grasper)

  手爪的初步定位由基于模糊行为规则的视觉伺服控制器完成。鉴于手眼CCD2的视线范围有限,本方案首先通过安装在机器人基座正上方的固定摄像机CCD1对整个工作空间场景进行观察。由于CCD1的轴

  

 

 

  

  

  

 

  

  4 结论(Conclusion)

  本文针对机器人的智能抓取作业,提出一种能总结人的模糊操作经验的视觉伺服新方法。本方法将机器人的抓取操作分成模糊初步定位和神经网络精确调整两个阶段来完成,具有控制规律易获取,控制误差能收敛,控制速度快以及控制精度高等特点。通过对六自由度机器人智能抓取任务的仿真说明所提方法的有效性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭