重磅:苹果秘密研发多年的人工智能终遭解密
扫描二维码
随时随地手机看文章
眼下最受关注的技术非人工智能莫属,但全球市值最高的公司苹果似乎对此无动于衷,被认为在人工智能领域严重落后,除了语音助手Siri,似乎没有更多作为。但真实情况或许与外界猜测的完全不同,Backchannel主编Steven Levy近日走访了苹果,发现这家公司其实先于业界使用了时髦的深度学习技术,并将其用在了除Siri外的方方面面。阅读本文你可以迅速了解苹果哪些产品已被机器学习入侵,为何它能秘密研发新技术多年,机器学习给其文化和原则带来了怎样的挑战,它又是如何与主流业界“对着干”……
Park 1
2014年6月30日,Siri迎来了一次脑部移植。
再三年前,苹果是第一家将智能助理整合进其操作系统的主流公司。而Siri则是苹果对一个收购而来的独立应用的改进,它还在2010年吞下了开发团队。对于Siri,最初的评价令人欣喜,但后来的几个月到几年中,用户对它的缺点越来越不耐烦。它常常错误理解指令,怎么调整也没沅改进。
所以在上面提到的那个日期,苹果将Siri的语音识别移植到了基于神经网络的系统上。这一服务首先面向美国用户,并在8月15日推向全球。一些早期技术仍有用,包括隐马尔可夫模型,但现在系统使用的是机器学习技术,包括DNN(深度神经网络),卷积神经网络,长短期记忆单位,封闭复发性单位(gated recurrent units),以及n-grams等。用户升级后,Siri虽然看起来还是一样,但经过了深度学习的加强。
与其它底层改进一样,由于不愿向竞争者暴露自己,苹果没有公布Siri的进展。如果用户注意到了什么,也只是它犯的错变少了。苹果也表示,准确度的改善令人震惊。
Eddy Cue
苹果互联网软件及服务部高级副总裁Eddy Cue表示,“这次改进的效果如此明显,以至于进行了重新测试,确保没人算错小数点。”
Siri转变的故事会让人工智能领域的人皱起眉头,不是因为神经网络对系统的提升,而是因为苹果对技术如此熟练又如此低调。直到最近,虽然苹果在AI领域加大了招聘力度,也做出了一些高调的收购,但外界还是认为它在最为激烈的AI竞争中稍显落后。由于苹果一直守口如瓶,连AI行家也不知道它在机器学习上有何作为。在斯坦福教授人工智能历史一课的Jerry Kaplan表示,“苹果不属于社区的一分子,就像是AI领域的NSA(美国国家安全局)”。一般认为,如果苹果的努力与Google和Facebook一样认真,应该会被外界所知。
艾伦AI研究所的Oren Etzioni表示,“Google、Facebook和微软有着顶尖的机器学习人才。苹果确实聘用了一些人,但机器学习的五大领袖中有谁为苹果工作?苹果有语音识别技术,但除此之外机器学习还能帮什么忙呢。”
Park 2
然而,就在本月初,苹果秘密地展示了机器学习在自家产品上的应用。但没有展示给Oren Etzioni看,而是展示给了我。当天,我的大部分时间都待在了苹果库比提诺飞船总部大楼里,在苹果高管的陪同下,感受了苹果产品在人工智能与机器学习上的紧密结合。(高管包括Eddy Cue,副总裁兼市场营销主管Phil Schiller,以及软件主管兼高级副总裁Craig Federighi)同时在场的还有负责开发Siri的专家。当我们都就坐以后,他们给我看了写满了两页纸的机器学习应用,一些是已经投入使用的产品或服务,一些是还在讨论中的项目。
如果你是一名iPhone用户,大概已经受益于机器学习所带来的用户体验的提升。但与直觉相反,机器学习并不仅仅应用于Siri上。识别陌生来电,在解锁后列出你最常使用的应用,或者在提醒事项中标记了一个约会(但你并没有将之放入日程表中),以及自动显示附近标记的酒店,这些在苹果全面拥抱机器学习及神经网络后,都能做得更加尽善尽美。
对,这就是传说中的“Apple Brain”,已经内置于你的iPhone中。
用到了神经网络的面部识别
“机器学习”,一名专家说,“现在在苹果的产品及服务里无处不在”。Apple store使用深度学习辨别骗保行为,公测版操作系统收到的反馈也会使用人工智能筛选一遍,找出有用的反馈报告。还有苹果的News应用,采用机器学习挑选出你可能感兴趣的新闻源。Apple Watch也利用到了机器学习,检测用户在锻炼状态还是仅仅在闲逛。还有就是众所周知的相机人脸识别,iPhone早已搭载这项技术。在Wi-Fi信号较弱的情况下,出于电量考虑,iOS还会建议你使用蜂窝网络。它甚至能分辨出拍摄视频的好坏,并在点击一个按钮之后,快速把一组相关的视频剪辑到一起。当然,这些苹果的竞争对手们做的也不赖,但高管们强调,苹果是唯一一家在用户隐私及用户体验上取得平衡的公司。当然,要在 iOS 设备上达到这一标准,也只有苹果能做到。
对苹果来说,人工智能并非新玩意儿。早在上世纪90年代,苹果推出牛顿(Newton)平板时,配套的触控笔就采用了一定程度的人工智能,用以识别用户输入的字符。这一研究成果目前还在为苹果帝国发光发热,即Apple Watch上面的中文字符识别系统。这一系统允许用户输入极为潦草的笔划仍能精准识别。(这些功能数十年以来都是由统一的机器学习团队在研发)当然,早期的机器学习极为原始,现在大行其道的深度学习在当时仍处于襁褓之中。现在人工智能与机器学习成为人必言之的显学,苹果在这方面一直饱受批评。近几周,TIm Cook终于发话,表示苹果并非在人工智能方面没有着力,仅仅是宣传较少。现在,高管们终于已改闷声做事的做法,将苹果在人工智能方面的成果公之于众。
机器学习用于Apple Watch的健康应用
“苹果在过去的五年里增长迅猛”,Phil Schiller说,“我们的产品的改进速度也非常快,A系列的处理芯片每年都有不小的性能突破,这使得我们拥有更加充裕的性能,将越来越多的机器学习技术应用到终端产品上。机器学习有不少好东西,而我们也有能力用好它”。
即使苹果拥抱机器学习的热情丝毫不亚于任何硅谷科技公司,但他们对于机器学习的使用仍是克制的。这帮库比提诺的天才们并不认为机器学习是解决一切问题的灵丹妙药。人工智能是未来的交互方式,但触摸屏幕,平板电脑,面向对象编程在特定时期一样发挥了相同的作用。在苹果看来,机器学习并非其他公司所说,是人机交互的终极答案。“人工智能与以往改变人机交互的各种媒介并无本质区别”,Eddy Cue 说。苹果对于机器是否将取代人类这样老生常谈的讨论也并无兴趣。与预期相同,苹果并没有承认造车计划,也没有谈及自制电视剧的传言,但苹果的工程师们明确指出,他们不会造出类似“天网”的东西。
“我们使用技术来解决以前做不了的事情,已经改进旧有范式”,Schiller说,“我们确保每项技术都能以最苹果的方式应用到产品上”。
之后,他们对于上述观点展开了进一步的阐释。如,人工智能在多大程度上重塑了苹果的生态系统。苹果研发人工智能的初衷是,弥补缺乏搜索引擎带来的用户体验缺失。(搜索引擎能够训练神经网络,使其快速成熟)此间,高管们再次强调了苹果对于保证用户隐私的决心。(即使这样将限制用户数据的使用,从而阻碍机器学习的效果)高管们强调,这些障碍并非不可逾越。
这个“大脑”有多大?iPhone上有多少用户数据缓存可供机器学习调用?工程师们的回答让我惊讶:“平均200Mb,具体多少取决于用户信息的多寡。”(为节约存储空间,缓存会时不时被清理出去)。这些信息包括了应用的使用习惯,与他人的交互,神经网络处理,还有“自然语言模型”。还有对象识别,人脸识别,场景识别等供神经网络学习。
对于苹果来说,这些数据都是你的私人信息,并不会被上传到网络及云端。