当前位置:首页 > 芯闻号 > 充电吧
[导读]我们知道,大部分Spark计算都是在内存中完成的,所以Spark的瓶颈一般来自于集群(standalone, yarn, mesos, k8s)的资源紧张,CPU,网络带宽,内存。Spark的性能,想

我们知道,大部分Spark计算都是在内存中完成的,所以Spark的瓶颈一般来自于集群(standalone, yarn, mesos, k8s)的资源紧张,CPU,网络带宽,内存。Spark的性能,想要它快,就得充分利用好系统资源,尤其是内存和CPU。有时候我们也需要做一些优化调整来减少内存占用,例如将小文件进行合并的操作。

一、问题现象

我们有一个15万条总数据量133MB的表,使用SELECT * FROM bi.dwd_tbl_conf_info全表查询耗时3min,另外一个500万条总数据量6.3G的表ods_tbl_conf_detail,查询耗时23秒。两张表均为列式存储的表。

大表查询快,而小表反而查询慢了,为什么会产生如此奇怪的现象呢?

二、问题探询

数据量6.3G的表查询耗时23秒,反而数据量133MB的小表查询耗时3min,这非常奇怪。我们收集了对应的建表语句,发现两者没有太大的差异,大部分为String,两表的列数也相差不大。

CREATE TABLE IF NOT EXISTS `bi`.`dwd_tbl_conf_info` ( `corp_id` STRING COMMENT '', `dept_uuid` STRING COMMENT '', `user_id` STRING COMMENT '', `user_name` STRING COMMENT '', `uuid` STRING COMMENT '', `dtime` DATE COMMENT '', `slice_number` INT COMMENT '', `attendee_count` INT COMMENT '', `mr_id` STRING COMMENT '', `mr_pkg_id` STRING COMMENT '', `mr_parties` INT COMMENT '', `is_mr` TINYINT COMMENT 'R', `is_live_conf` TINYINT COMMENT '' ) CREATE TABLE IF NOT EXISTS `bi`.`ods_tbl_conf_detail` ( `id` string, `conf_uuid` string, `conf_id` string, `name` string, `number` string, `device_type` string, `j_time` bigint, `l_time` bigint, `media_type` string, `dept_name` string, `UPDATETIME` bigint, `CREATETIME` bigint, `user_id` string, `USERAGENT` string, `corp_id` string, `account` string )

因为两张表均为很简单的SELECT查询操作,无任何复杂的聚合join操作,也无UDF相关的操作,所以基本确认查询慢的应该发生的读表的时候,我们将怀疑的点放到了读表操作上。通过查询两个查询语句的DAG和任务分布,我们发现了不一样的地方。

查询快的表,查询时总共有68个任务,任务分配比如均匀,平均7~9s左右,而查询慢的表,查询时总共1160个任务,平均也是9s左右。如下图所示:

至此,我们基本发现了猫腻所在。大表6.3G但文件个数小,只有68个,所以很快跑完了。而小表虽然只有133MB,但文件个数特别多,导致产生的任务特别多,而由于单个任务本身比较快,大部分时间花费在任务调度上,导致任务耗时较长。

那如何才能解决小表查询慢的问题呢?

三、业务调优

那现在摆在我们面前就存在现在问题:

为什么小表会产生这么小文件 已经产生的这么小文件如何合并

带着这两个问题,我们和业务的开发人员聊了一个发现小表是业务开发人员从原始数据表中,按照不同的时间切片查询并做数据清洗后插入到小表中的,而由于时间切片切的比较小,导致这样的插入次数特别多,从而产生了大量的小文件。

那么我们需要解决的问题就是2个,如何才能把这些历史的小文件进行合并以及如何才能保证后续的业务流程中不再产生小文件,我们指导业务开发人员做了以下优化:

使用INSERT OVERWRITE bi.dwd_tbl_conf_info SELECT * FROM bi.dwd_tbl_conf_info合并下历史的数据。由于DLI做了数据一致性保护,OVERWRITE期间不影响原有数据的读取和查询,OVERWRITE之后就会使用新的合并后的数据。合并后全表查询由原来的3min缩短到9s内完成。 原有表修改为分区表,插入时不同时间放入到不同分区,查询时只查询需要的时间段内的分区数据,进一步减小读取数据量。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭