如何系统地实现LTE无线设备的高级天线架构
扫描二维码
随时随地手机看文章
随着其连接可靠性和传输速度的大幅提高,LTE正迅速在世界各地发展起来。根据全球移动供应商协会(GSA)的数据显示,目前已有超过318个LTE网络在111个国家和地区投入商用。
在已经商用和正在计划的所有这些LTE网络中有一个共性,它们同样需要实现LTE的多输入,多输出(MIMO)需求。这些MIMO的需求会延展到基站和终端设备中。在终端设备的案例中,有几个原因使得MIMO成为挑战,包括:需要多个天线,持续不断变薄的趋势,史无前例的频带分离,运营商对低频的偏爱,以及 在射频设计中缺乏经验。
3G仅需要一个天线,而MIMO技术却需要至少两个天线。天线的数量会随着MIMO设计成4&TImes;4和8&TImes;8而增加。为多个LTE天线(包括3G/2G备用天线、GPS、Wi-Fi、蓝牙和NFC),找寻空间变得更加困难。而高阶MIMO设计又与更轻薄的设备产生冲突。
随着设备变得更加轻薄,智能手机和平板电脑的内部空间正以每年25%的速度锐减。显示屏和电池获得了最高优先级,而诸如处理器、内存、天线系统和其他部件只能来争夺剩余的空间。一方面是更薄的趋势,另一方面是MIMO和低频带(例如700MHz)需要物理尺寸更大的天线配置,要同时满足这两个需求,这给原始 设备制造商们(OEM)以及他们的设计团队带来不可忽视的压力。
LTE的工作频段超过40个,覆盖了从450MHz到 2.7GHz,其中大约一半已经用于现有的设备中。为智能手机或平板电脑建立LTE制式的全球性漫游,需要支持到至少40个频段,在LTE还未覆盖到的区域则降级为相应的3G制式 。在这些频段中,即使是在任一个很小的子集频段中,为必要的2&TImes;2或更多的MIMO寻找天线空间都是具有挑战性的,再加上诸如Wi-Fi和其他技术的天线 时就显得更加不容易了。
运营商们总是渴望更低的资本支出(CapEx)和运营成本(OpEx),因此低频段成为他们的最佳选择。通常的经验是更低的频率和更低密度的基站会给运营商带来更好的收益。较低的频带同样能提供较好的室内覆盖率,比如700MHz,在此频段也可以适应迅 速成长的“物联网”(IoT) 市场的需求,提供良好的无线网络,这也是保证用户满意度的关键。运营商们目前正关注600MHz频段在未来的使用机制。但是,较低的频带同样需要物理尺寸更大的天线,这就使得OEM厂商和他们的射频供应商在其更为轻薄的智能手机中放置天线时必须更有创造性。IoT设备同样也存在天线空间限制的情况。
随着LTE技术的普及率上升,设备供应商在其产品中加入LTE的时候压力也随之而来。仅仅是因为跟随新技术的学习曲线(learning curve)就足以给经验丰富的智能手机供应商带来挑战。而对于众多在M2M和IoT只有较少经验或者毫无经验的供应商来说,在产品中植入蜂窝技术便存在更多的挑战。
OEM厂商和他们的射频供应商不仅仅是要应对这些挑战,而更重要的,是利用创新的解决方案来更有效地工作,同时在市场差异化中获得优势。
有源天线和射频解决方案:实现更好的灵活性、可靠性和性能
有源天线系统能够帮助OEM厂商和他们的射频供应商更有效地工作。相比于传统的无源天线,有源系统提供了在设计和性能上更高的灵活性。事实上,有源天线是适应LTE的频段分离和MIMO需求的最简单的方式,它不仅能很好地满足运营商偏爱低频的需求,同时还能够帮助契合越来越薄的设备。
单独一根的有源天线能够覆盖两个或者两个以上的LTE频段,甚至那些相隔很远的频段也没有问题,比如频段17(704MHz到746MHz)和频段 41(2496MHz到2690MHz)。单馈有源天线(Single-feed acTIve antennas)已经发展为覆盖所有从698MHz到2700MHz范围内的LTE频段。这一灵活性使得更多的运营商能发展LTE的演进版本(LTE- Advanced),也就是能够载波聚合。当分离的频段变得更远的时候,LTE-Advanced就更有挑战性。系统设计者们越来越多地选择有源天线系统 来应对这一挑战。