视频监控与大数据结合,共铸智能安防未来
扫描二维码
随时随地手机看文章
得益于IT信息技术的快速进步,人类可以随时随地记录下产生的各类数据,而同时数据存储的成本也正以前所未有的速度下降,一个大数据的时代在悄然来临。根据IDC预测,全球在2010年正式进入ZB时代,全球数据量大约每两年翻一番,意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。爆炸式增长的数据,正推动人类进入大数据的时代。
大数据是飞速增长的,用现有数据库管理工具难以管理所有的数据集合。这些数据包括:社交媒体、移动设备、科学计算和城市中部署的各类传感器等等,其中视频又是构成数据体量最大的一部分。在视频监控大联网、高清化推动下,视频监控业务步入数据洪水时代不可避免。如图1所示。
图1 全球数据规模预测
视频监控数据有两个方面的内涵——海量和非结构化。视频监控数据量规模庞大,并且随着高清化、超高清化的趋势加强,视频监控数据规模将以更快的指数级别增长;与通常讲的结构化数据不同,视频监控业务产生的数据绝大多数以非结构化的数据为主,这给传统的数据管理和使用机制带来了极大的挑战。
数据“洪水”带给视频监控的困境
飞速增长的视频监控数据,使得传统视频监控体系架构、数据的管理方式、数据分析应用等面临新的困境。如图2所示。
图2 视频监控大数据时代面临的困境
困境一,数据量的急剧扩大和IT投资之间的矛盾。按照I T产业的法则:在满足客户需求的前提之下,往往技术成本越低,其生命力越强。由于数据量的急速扩大,以及随之而来的大规模计算的需求越来越多,一味采用高配硬件,使得硬件投资成为客户不可承受之重,客户越来越希望在满足需求的前提下,用中低端的硬件来替换高配硬件。
困境二,海量数据和有效数据之间的矛盾。摄像头7&TImes;24小时工作,如实记录镜头覆盖范围发生的一切,仅仅记录信息是不够的,因为对于客户来讲可能大部分信息是无效,有效信息可能只分布在一个较短的时间段内,按照数学统计的说法,信息是呈现幂律分布的,也称之为信息的密度,往往越高密度的信息对客户价值越大。
困境三,资源利用和效率之间的矛盾,串行计算和并行计算的矛盾。视频监控业务网络化、大联网后,网络内的设备越来越多,利用闲置的计算资源,实现资源的最大化利用,关乎运算的效率。在视频监控领域,往往视频分析的效率决定价值,更低的延迟、更准确的分析往往是平安城市这类客户的普遍需求。随着数据量的增加,哪怕对TB级别的数据进行对视频内容的数据分析和检索,采用串行计算的模式都可能需要花费数小时的计算,已远远不能胜任时效性的需求。视频的分析和检索,不能依赖于传统的手段,巨量数据的效率优化,并行计算是视频智能分析的唯一出路。
因为大数据带来了很多现实中的难题,为了解决这些难题需要新的技术变革,需要新一代的数据库技术,业界称之为大数据技术 。IDC这样定义大数据技术:大数据技术将被设计用于在成本可承受(economically)的条件下,通过非常快速(velocity)的采集、发现和分析,从大量化(volumes)、多类别(variety)的数据中提取价值(value),将是IT领域新一代的技术与架构的变革。Had oop技术正是在此背景下诞生,历经数年的积累,Hadoop已成长为一个强大的生态系统,不但衍生出HDFS、HBase、Hive等多个子项目,成为IT领域广泛采用的大数据模型框架。
欲了解更多视频监控或智能安防技术与市场,请关注并参与ETD第13期:智能安防技术沙龙!(火热报名中)