不得不知的生物特征识别十大关键技术
扫描二维码
随时随地手机看文章
生物识别技术在近几年有了长足的进展,但要使生物识别从理论研究走向实际应用,众多的科研单位还需要突破和解决其中一系列的关键技术。从统计的意义上讲人类的指纹、掌形、虹膜等生理特征存在着唯一性。因而这些特征都可以作为鉴别用户身份的依据。
1、生物特征传感器技术
通过某种原理可以测量生物特征,并将其转化成计算机可以处理的数字信号,这就是生物特征传感器的主要任务,也是生物特征识别的第一步。大部分的生物特征都是通过光学传感器如CCD或CMOS形成图像信号,例如人脸、指纹、虹膜、掌纹、手形、静脉等。但是虹膜和静脉图像需要主动的红外光源才可以得到细节清晰的个性特征。由于外加主动光源能够克服可见光线变化对生物特征的影响,所以最近在人脸识别领域有研究人员设计了红外成像设备,来克服人脸模式随光照变化的类内差异,从而大幅度提高了人脸识别的精度。
为了提高生物识别系统的易用性、舒适性和用户的接受程度,同时又要保证生物特征信号的质量,此外还要小巧精致、成本低廉,生物特征传感器技术还有许多需要改进的地方。例如最近已经有通过非接触方式采集的3D 指纹传感器技术。生物特征传感器的核心技术包括:
1)智能定位技术
生物特征获取装置必须让用户和识别系统处于合适的距离和位置才可以捕获合格的生物特征信号。最理想的方案是让采集装置自动判别用户的位置,然后主动调节光学系统或者直接通过机械装置移动采集设备,这样就可以降低对用户的要求,采集方式更加智能化和人性化。
2)人机接口设计
生物特征采集系统应该“以人为本”,符合人体工学,设计生物特征和采集装置之间的交互接口。通过开发用户自定位技术让用户在某种方式的导引下很快找到合适的成像位置。例如现有的人脸识别和虹膜识别系统中通常在采集装置上安装一面镜子或者设置一个注视点或者设计比较巧妙的光学系统,用户通过视觉或者语音反馈就可以比较迅速地找到适合成像的位置。
3)光学系统设计
主要是光学镜头组的设计和加工,如果需要主动光源照明的话还要在镜头上安装滤光片,根据成像距离设置主动光源。
4)机械控制技术
包括自动变焦的电控单元设计、配合用户的身高和距离进行程序调节的机械单元设计等。
生物特征传感器的核心技术还包括传感器电路设计;信号传输与通信技术;防撬报警技术以及和其他技术的有机结合。
2、活体检测技术
为了防止恶意者伪造和窃取他人的生物特征用于身份认证,生物识别系统必须具有活体检测功能,即判别向系统提交的生物特征是否来自有生命的个体。一般生物特征的活体判别技术利用的是人们的生理特征,例如活体指纹检测可以基于手指的温度、排汗、导电性能等信息,活体人脸检测可以基于头部的移动、呼吸、红眼效应等信息,活体虹膜检测可以基于虹膜振颤特性、睫毛和眼皮的运动信息、瞳孔对可见光源强度的收缩扩张反应特性等。
此外,基于生物特征图像的光谱学信息也是进行活体检测的有效途径。例如打印的图像会形成有规律的纸质纹理特征,可以用频谱特征进行检测。此外,还可以通过人机互动的形式检测生物特征的活体特性; 使用多模态生物特征识别系统也可以提高伪造的难度。
从现有的技术水平看,活体检测功能一直是生物识别系统的薄弱环节,已经有研究人员使用伪造的指纹和人脸攻破了现有的系统,引发了有些用户对生物识别技术的信任危机。所以活体检测技术将是生物识别系统进入高端安全应用的最大瓶颈。
3、生物特征信号质量评价技术
在自动身份识别系统中,生物特征一般是以连续的视频流或者音频流的形式进行获取。由于有效的生物特征采集范围总是有限的,再加上人的运动、姿态变化等因素,传输到计算机的生物特征信号大部分都是不合格的。而高质量的生物特征信号是进行特征表达和身份识别的基础,低质量的生物特征信号有可能引起错误接收或错误拒绝,降低系统的稳定性和鲁棒性(系统的健壮性),浪费大量的计算资源在无效的生物特征信号处理上。
基于上述分析,我们可以从三个方面努力排除低质量生物特征信号对识别性能的影响:
■研究高性能的成像硬件平台
■提高识别算法的鲁棒性
■在生物识别系统中引入智能的质量评价软件模块,只容许较高质量的生物特征信号进行注册或识别。
在这些措施中设计有效的质量评价算法最实际。因为再鲁棒的识别算法能够接受的信号质量也是有限的。虽然已经有高性能的生物特征获取装置面世,但是价格十分昂贵,也解决不了根本问题。所以研究生物特征的质量评价算法对于识别系统性能的提高具有重要意义。
生物特征信号的质量评价可看做一个两类模式识别问题——将采集到的生物特征分为合格和不合格两种情况。如果要对合格信号量化打分,还要将评价指标定量化。生物特征信号的质量评价问题是一个比较困难的问题,因为造成特征信号质量差的原因千差万别,即负样本的种类太多,不胜枚举,很难设计一个分类器将所有的正负样本区分开。需要通过质量评价来过滤的低质量生物特征一般包括存在离焦模糊或运动模糊的图像,信噪比太低的信号,遮挡的图像等。一般可以从空域和频域两个角度出发去设计质量评价算法。
从产品实用化的角度考虑,生物识别系统现在遇到的最大的瓶颈之一就是信号的质量评价。一方面,为了拓宽系统的适用范围,提高产品的易用性,对用户更友好,为此,研究人员希望系统能在生物特征质量要求较低的条件下运作,但是同时又要求系统能有稳定的高精度。为了平衡这个矛盾,设计“稳、快、准”的质量评价算法将是必由之路。
4、生物信号的定位与分割技术
经过处理后的掌纹纹路更清晰了。从生物特征获取装置采集得到的原始信号一般不仅包括生物特征本身,还包括背景信息,例如原始的虹膜图像中包括虹膜、瞳孔、巩膜、眼皮和睫毛等多个区域,真正能有效鉴别人们身份的图像内容也就在虹膜区域。所以必须从原始信号中分割出感兴趣内容进行特征提取。定位和分割算法一般都是基于生物特征在图像结构和信号分布方面的先验知识。例如人脸检测就是要从图像中找到并定位人脸区域,一直是计算机视觉领域的研究热点。
2001年美国的Viola和Jones提出了用易于计算的Harr小波特征来描述人脸模式,用AdaBoost来训练人脸检测分类器,取得了人脸检测领域的突破性进展,实现了实时检测视频中的人脸图像,而且准确率也非常高。这个方法对计算机视觉和生物识别领域的影响都很大,现在商业化的人脸识别系统基本上都是使用这种人脸检测方法或者其变种。而且这种通过机器学习训练弱分类器的方法也被推广到了一般视觉对象的检测和识别上。指纹的分割算法一般是基于指纹区域和背景区域的图像块灰度方差的差异特性虹膜的定位主要利用瞳孔/虹膜/巩膜存在较大的灰度跳变并且成圆形的边缘分布结构特征;掌纹的定位一般是基于手指之间的参考点来构建参考坐标系。
5、生物特征信号增强技术
得到了分割后的特征区域后,有的生物特征识别方法需要在特征提取前对感兴趣区域进行增强,主要目的包括去噪和凸显特征内容。例如人脸和虹膜图像一般用直方图均衡化的方法增强图像信息的对比度;指纹一般用频域的方法得到脊线分布的频率和方向特征后进行纹路增强对于比较模糊的生物特征信号,可以考虑使用超分辨率的方法或者逆向滤波的方法进行增强。
6、生物特征信号的校准技术
为了克服不同时刻采集的生物特征信号之间的平移、尺度和旋转变换,需要将参与比对的两个生物特征进行对齐。有的生物特征校准在特征提取之前完成,例如常用主动形状模型和主动表观模型进行人脸对齐;有的生物特征校准的过程就是特征匹配的过程。生物特征信号的校准结果对于识别精度的影响很大,所以也有学者认为生物特征识别最重要的问题是校准技术。
7、生物特征表达与抽取技术
对于生物特征识别,不管是外行还是内行,人们首先想到的问题就是机器是用什么特征进行身份识别的?什么是生物特征信号中凸现个性化差异的本质特征?这就是生物识别的基本的、原理性的问题。对于这个问题在个别的生物特征识别领域得到了共识,例如指纹识别,大家都公认细节点(包括末梢点和分叉点)是描述指纹特征的最佳表达方式,所以国际上就有统一的基于细节点信息的指纹特征模板交换标准,给不同厂商的指纹识别系统的兼容性和数据交换带来了便利。但是在其他生物识别领域,例如人脸、虹膜、掌纹等领域研究人员还在不断探索最佳的特征表达模型。虽然这些领域的特征表达方法的种类繁多,部分算法也已经取得了很好的识别性能,但是人脸识别、虹膜识别、掌纹识别的根本问题——“什么是人脸、虹膜或掌纹图像的本质特征及其有效表达?”一直没有得到权威和普遍认同的回答。
这是因为每个人脸、虹膜和掌纹图像的特征表达方法都是基于某种信号处理方法或者某个计算机视觉或者某个模式识别的理论,“公说公有理,婆说婆有理”,大家对于这些图像的本质特征表达还没有进行深入的研究。现在生物特征表达领域的流行趋势是把各种经典的或者新提出的图像分析方法依次去试,有点撞大运的感觉,产生这种现象的根源是大家没有基础理论的指导,不知道向哪个方向努力好。由于各种方法各自为“政”,造成生物特征模板的数据交换格式难以统一和标准化。例如人脸、虹膜和掌纹的数据交换标准只能基于图像,这是因为大家找不到一个统一的、权威的图像特征表达方法。
相对于基于特征的数据交换标准,基于图像的交换标准在计算和存储资源的占用、传输速率等多方面都处于下风。例如在电子护照应用中,统一格式的生物数据都存放在非接触IC芯片中,在识别前需要通过无线读卡器从护照IC中读出生物数据,这时基于特征的方法比基于图像的方法快100倍,而且基于图像的方法还要多一个特征提取的步骤才能得到用户护照中的生物特征。所以不管是对于研究还是应用,生物特征信号本质特征的尽快确定都是最重要的。
通过模拟这些生物体神经细胞对外界视觉刺激的信息编码规则,计算机视觉研究人员提出了Ordinal Measures(定序测量特征)来表达图像内容。中科院自动化所生物识别与安全技术研究中心通过拓展原始的定序测量特征的内涵,提出了多极子滤波器的概念,建立了虹膜图像特征表达的一般框架,证明了虹膜图像区域之间的排序测度特征等价于虹膜物理表面不同位置反光率之间的大小顺序关系,是独立于光照、对比度等外界因素的虹膜图像的本质特征。
在这个框架下,虹膜特征抽取甚至可以简化成简单的加减运算,成功地解决了虹膜识别从PC向嵌入式平台移植的计算复杂性难题。通过定序测量特征,研究中心还建立了掌纹图像特征表达的一般框架,统一了该领域识别性能最好的三种掌纹识别方法。并针对低分辨率掌纹图像上主线和皱纹线灰度模式特点,提出了新颖的十字架形微分滤波器来抽取掌纹图像中的定序测量特征。实验结果表明新的掌纹识别方法不仅识别精度远高于主流方法,并且计算速度比最好方法快一倍。
8、生物特征的匹配技术
特征匹配就是计算两个生物特征样本的特征向量之间的相似度。图匹配算法也在指纹细节点模式、人脸模式、虹膜斑块模式的相似性度量中得到成功应用。
9、生物特征数据库检索与分类技术
随着生物特征识别技术在人类日常生活中的普及,使用人数的增长必然导致生物特征数据库的不断扩大。这种规模的扩大不仅仅表现在数据存储量的扩大,还表现在从数据库中搜索某一条记录所耗费的时间的增加。例如在一对多的超大规模(如一个城市、一个国家、一个行业的人群)生物识别应用中,完成一次识别的时间的长度将会让人无法忍受。这是任何一项成熟的生物识别技术从小规模应用向大规模应用转化时不可避免的问题。
虽然可以使用并行计算技术来减少每次识别的时间,如果有一个生物特征粗分类的方法就可以实现分层次的生物识别:根据生物特征向量将数据库中所有的模板分成若干个大类,在大规模识别时首先判断输入生物特征所属的大类,然后首先和这个大类的数据库模板进行比对,这样就可以(至少从期望值)减少等待识别结果的时间。例如指纹可以根据奇异点的个数和位置信息分成拱形、尖拱形、左旋形、右旋形和旋涡形等几个大类。在虹膜识别研究领域也有人利用分形维特征将虹膜数据库分成四大类。这些分类方法的准确率都高于90%,结果是令人鼓舞的。利用生物特征模式,还可以实现人种分类、性别分类等。所以生物特征粗分类和数据库检索技术将是一个很有前途的研究方向,下一步研究的重点是增加类别数,提高分类的准确率。
10、生物特征识别系统的性能评价
迄今为止,任何的生物特征识别系统或者方法都有出错的可能。对系统的识别精度给出客观、准确的评估其实是一个很复杂的问题,它受测试样本的数量、质量、评估指标等因素的影响,但是这对应用单位和司法部门却是一个很关注的焦点问题。所以生物特征识别方法的性能测评已成为生物特征识别研究的一个重要方向。对于 1∶1比对的身份验证系统,错误有两种情况:一是把不同人的生物特征识别为同一类,称为错误接收;另一种可能是把同一人的生物特征识别为不同类,称为错误拒绝。
一般可以从理论和实验两个方面评估一个生物识别方法的性能指标。从理论方面可以研究生物特征的唯一性,即对影响错误接收和错误拒绝的各种参数进行准确建模,从每种生物特征识别方法的本质和机理出发给出理论上可以取得的错误率的下界。这个工作是很有意义也是难度很大的。例如司法界对通过指纹匹配结果来指认罪犯还存在着很大争议,虽然有研究人员宣称地球上找不到指纹特征完全相同的两个人,但是在自动或者人工指纹识别系统中,到底需要多大的相似度才可以完全确认两枚指纹的同源性?识别出错的准确概率到底是多少?已经有研究人员对这个问题进行了比较深入的研究,但是并没有完全解决好这个问题。